Gad Michel, Khomami Narjes Tayyebi Sabet, Krieg Ronald, Schor Jana, Philippe Allan, Lechtenfeld Oliver J
Research group BioGeoOmics, Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research, UFZ, Leipzig 04318, Germany.
iES Landau, Research Group of Environmental and Soil Chemistry, University of Kaiserslautern-Landau (RPTU), Landau 76829, Germany.
Water Res. 2025 Apr 1;273:123018. doi: 10.1016/j.watres.2024.123018. Epub 2024 Dec 20.
Dissolved organic matter (DOM) present in surface aquatic systems is a heterogeneous mixture of organic compounds reflecting its allochthonous and autochthonous organic matter (OM) sources. The composition of DOM is determined by environmental factors like land use, water chemistry, and climate, which influence its release, movement, and turnover in the ecosystem. However, studying the impact of these environmental factors on DOM composition is challenging due to the dynamic nature of the system and the complex interactions of multiple environmental factors involved. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) enables detailed molecular-level analysis of DOM, allowing the identification of thousands of individual molecular formulas potentially representing unique markers for its "molecular history". The combination of FT-ICR MS with machine-learning techniques is promising to unravel DOM-environment interactions owing to their capacity to capture complex non-linear relationships. We present a novel unsupervised multi-variant machine-learning approach, aiming to model correlation coefficients as robust indicators of how changes in environmental factors (e.g., the concentration of nutrients or the land use) result in changes in the molecular formula descriptors of DOM (i.e., aromaticity index or hydrogen to carbon ratio). We applied this approach to an environmental data set collected from 84 sites across central Europe exhibiting a broad range of water chemistry and land uses. Our model revealed an increase in molecular mass and aromaticity of DOM in densely forested regions as compared to open urban areas, where DOM was characterized by higher concentrations of dissolved ions and increased microbial degradation, leading to smaller and more aliphatic DOM. Our findings highlight the substantial human impact on climate change, as evidenced by the accelerated photochemical and microbial degradation of DOM, which consequently enhances greenhouse gas emissions and exacerbates global warming.
地表水生系统中存在的溶解有机物(DOM)是有机化合物的异质混合物,反映了其外源和内源有机物质(OM)的来源。DOM的组成由土地利用、水化学和气候等环境因素决定,这些因素影响其在生态系统中的释放、移动和周转。然而,由于系统的动态性质以及所涉及的多种环境因素的复杂相互作用,研究这些环境因素对DOM组成的影响具有挑战性。傅里叶变换离子回旋共振质谱(FT-ICR MS)能够对DOM进行详细的分子水平分析,从而识别出数千个可能代表其“分子历史”独特标记的单个分子式。FT-ICR MS与机器学习技术的结合有望揭示DOM与环境之间的相互作用,因为它们能够捕捉复杂的非线性关系。我们提出了一种新颖的无监督多变量机器学习方法,旨在将相关系数建模为强大的指标,以反映环境因素(例如养分浓度或土地利用)的变化如何导致DOM的分子式描述符(即芳香性指数或氢碳比)的变化。我们将这种方法应用于从欧洲中部84个地点收集的环境数据集,这些地点呈现出广泛的水化学和土地利用情况。我们的模型显示,与开放的城市地区相比,森林茂密地区的DOM分子量和芳香性增加,在城市地区,DOM的特征是溶解离子浓度较高且微生物降解增加,导致DOM更小且脂肪族更多。我们的研究结果突出了人类对气候变化的重大影响,DOM的光化学和微生物降解加速证明了这一点,这进而增加了温室气体排放并加剧了全球变暖。