Hosseini Mehdi, Castillo Rodrigo, Soleymani Mousa
Department of Chemistry, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran.
Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile.
Talanta. 2025 May 1;286:127486. doi: 10.1016/j.talanta.2024.127486. Epub 2024 Dec 28.
Monitoring paracetamol levels in environmental samples is essential, as this widely used pharmaceutical can degrade water quality and adversely affect both ecosystems and human health. To address this issue, a novel, simple, sensitive, and accurate method has been developed. This method employs a functionalized ionic liquid, 2-(4-hydroxybenzyl)hydrazinium chloride ([HBH][Cl]), specifically designed to structurally mimic paracetamol and function as a complexing agent. Following strong interactions between the ionic liquid and paracetamol in aquatic samples, the ionic liquid is magnetized and then separated using a magnetic field. The synthesis of the magnetic ionic liquid was confirmed using a variety of analytical techniques, including Fourier-transform infrared spectroscopy, carbon and proton nuclear magnetic resonance (CNMR and HNMR), vibrating sample magnetometry, and elemental analysis. The interaction between the ionic liquid and paracetamol was characterized through density functional theory calculations, UV-Vis spectroscopy, and CHNO analysis, which confirmed the formation of strong hydrogen bonds and the resultant complexation. Critical parameters influencing the measurement of paracetamol in aquatic samples were systematically optimized. The method's performance, assessed through key figures of merit, demonstrated excellent analytical capabilities: a limit of detection of 0.087 μg L at a 99.7 % confidence level, a limit of quantification of 0.15 μg L, a linear dynamic range of 1.0-200.0 μg L, intra-day relative standard deviation of 1.12 %, inter-day RSD of 3.04 %, preconcentration factor of 119, and concentration factor of 95. Furthermore, the method achieved a recovery efficiency of 99-102 % in real samples and successfully quantified paracetamol in a commercial paracetamol tablet.
监测环境样品中的对乙酰氨基酚含量至关重要,因为这种广泛使用的药物会降低水质,并对生态系统和人类健康产生不利影响。为解决这一问题,已开发出一种新颖、简单、灵敏且准确的方法。该方法采用了一种功能化离子液体,即2-(4-羟基苄基)氯化肼([HBH][Cl]),其经过特殊设计,在结构上模拟对乙酰氨基酚,并用作络合剂。在水生样品中,离子液体与对乙酰氨基酚发生强烈相互作用后,将离子液体磁化,然后利用磁场进行分离。通过多种分析技术,包括傅里叶变换红外光谱、碳和质子核磁共振(CNMR和HNMR)、振动样品磁强计以及元素分析,确认了磁性离子液体的合成。通过密度泛函理论计算、紫外可见光谱和CHNO分析对离子液体与对乙酰氨基酚之间的相互作用进行了表征,证实形成了强氢键并产生了络合作用。系统地优化了影响水生样品中对乙酰氨基酚测定的关键参数。通过关键性能指标评估该方法的性能,结果表明其具有出色的分析能力:在99.7%置信水平下的检测限为0.087 μg/L,定量限为0.15 μg/L,线性动态范围为1.0 - 200.0 μg/L,日内相对标准偏差为1.12%,日间相对标准偏差为3.04%,预富集因子为119,浓缩因子为95。此外,该方法在实际样品中的回收率为99 - 102%,并成功对市售对乙酰氨基酚片剂中的对乙酰氨基酚进行了定量。