Suppr超能文献

机器学习与临床医生对肠杆菌科血流感染中抗生素耐药性的预测

Machine learning and clinician predictions of antibiotic resistance in Enterobacterales bloodstream infections.

作者信息

Yuan Kevin, Luk Augustine, Wei Jia, Walker A Sarah, Zhu Tingting, Eyre David W

机构信息

Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK.

Nuffield Department of Medicine, University of Oxford, Oxford, UK.

出版信息

J Infect. 2025 Feb;90(2):106388. doi: 10.1016/j.jinf.2024.106388. Epub 2024 Dec 30.

Abstract

BACKGROUND

Patients with Gram-negative bloodstream infections are at risk of serious adverse outcomes without active treatment, but identifying who has antimicrobial resistance (AMR) to target empirical treatment is challenging.

METHODS

We used XGBoost machine learning models to predict antimicrobial resistance to seven antibiotics in patients with Enterobacterales bloodstream infection. Models were trained using hospital and community data from Oxfordshire, UK, for patients with positive blood cultures between 01-January-2017 and 31-December-2021. Model performance was evaluated by comparing predictions to final microbiology results in test datasets from 01-January-2022 to 31-December-2023 and to clinicians' prescribing.

FINDINGS

4709 infection episodes were used for model training and evaluation; antibiotic resistance rates ranged from 7-67%. In held-out test data, resistance prediction performance was similar for the seven antibiotics (AUCs 0.680 [95%CI 0.641-0.720] to 0.737 [0.674-0.797]). Performance improved for most antibiotics when species identifications (available ∼24 h later) were included as model inputs (AUCs 0.723 [0.652-0.791] to 0.827 [0.797-0.857]). In patients treated with a beta-lactam, clinician prescribing led to 70% receiving an active beta-lactam: 44% were over-treated (broader spectrum treatment than needed), 26% optimally-treated (narrowest spectrum active agent), and 30% under-treated (inactive beta-lactam). Model predictions without species data could have led to 79% of patients receiving an active beta-lactam: 45% over-treated, 34% optimally-treated, and 21% under-treated.

CONCLUSIONS

Predicting AMR in bloodstream infections is challenging for both clinicians and models. Despite modest performance, machine learning models could still increase the proportion of patients receiving active empirical treatment by up to 9% over current clinical practice in an environment prioritising antimicrobial stewardship.

摘要

背景

革兰氏阴性菌血流感染患者若不进行积极治疗,有发生严重不良后果的风险,但识别出具有抗菌药物耐药性(AMR)的患者以指导经验性治疗具有挑战性。

方法

我们使用XGBoost机器学习模型预测肠杆菌科血流感染患者对七种抗生素的耐药性。模型使用来自英国牛津郡的医院和社区数据进行训练,这些数据来自2017年1月1日至2021年12月31日血培养呈阳性的患者。通过将预测结果与2022年1月1日至2023年12月31日测试数据集中的最终微生物学结果以及临床医生的处方进行比较,来评估模型性能。

研究结果

4709例感染发作被用于模型训练和评估;抗生素耐药率在7%至67%之间。在保留的测试数据中,七种抗生素的耐药预测性能相似(曲线下面积[AUC]为0.680[95%置信区间0.641 - 0.720]至0.737[0.674 - 0.797])。当将物种鉴定结果(约24小时后可得)作为模型输入时,大多数抗生素的性能有所改善(AUC为0.723[0.652 - 0.791]至0.827[0.797 - 0.857])。在接受β-内酰胺类药物治疗的患者中,临床医生的处方导致70%的患者接受了有效的β-内酰胺类药物:44%的患者治疗过度(使用了比所需更广谱的治疗药物),26%的患者治疗最佳(使用了最窄谱的有效药物),30%的患者治疗不足(使用了无效的β-内酰胺类药物)。在没有物种数据的情况下,模型预测可能会导致79%的患者接受有效的β-内酰胺类药物:45%的患者治疗过度,34%的患者治疗最佳,21%的患者治疗不足。

结论

对临床医生和模型而言,预测血流感染中的抗菌药物耐药性都具有挑战性。尽管性能一般,但在优先考虑抗菌药物管理的环境中,机器学习模型仍可使接受积极经验性治疗的患者比例比当前临床实践提高多达9%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验