Suppr超能文献

一种用于预测碳青霉烯类耐药性的实用机器学习模型。

A Pragmatic Machine Learning Model To Predict Carbapenem Resistance.

机构信息

Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.

Institute for Informatics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.

出版信息

Antimicrob Agents Chemother. 2021 Jun 17;65(7):e0006321. doi: 10.1128/AAC.00063-21.

Abstract

Infection caused by carbapenem-resistant (CR) organisms is a rising problem in the United States. While the risk factors for antibiotic resistance are well known, there remains a large need for the early identification of antibiotic-resistant infections. Using machine learning (ML), we sought to develop a prediction model for carbapenem resistance. All patients >18 years of age admitted to a tertiary-care academic medical center between 1 January 2012 and 10 October 2017 with ≥1 bacterial culture were eligible for inclusion. All demographic, medication, vital sign, procedure, laboratory, and culture/sensitivity data were extracted from the electronic health record. Organisms were considered CR if a single isolate was reported as intermediate or resistant. Patients with CR and non-CR organisms were temporally matched to maintain the positive/negative case ratio. Extreme gradient boosting was used for model development. In total, 68,472 patients met inclusion criteria, with 1,088 patients identified as having CR organisms. Sixty-seven features were used for predictive modeling. The most important features were number of prior antibiotic days, recent central venous catheter placement, and inpatient surgery. After model training, the area under the receiver operating characteristic curve was 0.846. The sensitivity of the model was 30%, with a positive predictive value (PPV) of 30% and a negative predictive value of 99%. Using readily available clinical data, we were able to create a ML model capable of predicting CR infections at the time of culture collection with a high PPV.

摘要

在美国,由耐碳青霉烯(CR)的生物体引起的感染是一个日益严重的问题。虽然抗生素耐药性的危险因素众所周知,但仍需要早期识别抗生素耐药性感染。我们使用机器学习(ML)来开发一种预测碳青霉烯类耐药性的模型。所有年龄大于 18 岁的患者,在 2012 年 1 月 1 日至 2017 年 10 月 10 日期间在三级保健学术医疗中心住院,并至少进行了一次细菌培养,都有资格入选。所有人口统计学、药物、生命体征、手术、实验室和培养/药敏数据都从电子健康记录中提取出来。如果单个分离株被报告为中介或耐药,就认为该生物体是 CR。将具有 CR 和非 CR 生物体的患者进行时间匹配,以维持阳性/阴性病例的比例。极端梯度提升被用于模型开发。共有 68472 名患者符合入选标准,其中 1088 名患者被确定为具有 CR 生物体。有 67 个特征用于预测建模。最重要的特征是先前使用抗生素的天数、最近的中心静脉导管放置和住院手术。在模型训练后,接收器操作特征曲线下的面积为 0.846。模型的灵敏度为 30%,阳性预测值(PPV)为 30%,阴性预测值为 99%。使用现成的临床数据,我们能够创建一个 ML 模型,能够在培养物采集时预测 CR 感染,并且具有较高的 PPV。

相似文献

8
Predicting post-stroke pneumonia using deep neural network approaches.使用深度神经网络方法预测卒中后肺炎。
Int J Med Inform. 2019 Dec;132:103986. doi: 10.1016/j.ijmedinf.2019.103986. Epub 2019 Oct 1.

引用本文的文献

9
Timing of antibiotic therapy in the ICU.ICU 中的抗生素治疗时机。
Crit Care. 2021 Oct 15;25(1):360. doi: 10.1186/s13054-021-03787-z.

本文引用的文献

2
Array programming with NumPy.使用 NumPy 进行数组编程。
Nature. 2020 Sep;585(7825):357-362. doi: 10.1038/s41586-020-2649-2. Epub 2020 Sep 16.
9
Ascent of machine learning in medicine.机器学习在医学领域的兴起。
Nat Mater. 2019 May;18(5):407. doi: 10.1038/s41563-019-0360-1.
10
Machine Learning in Medicine.医学中的机器学习
N Engl J Med. 2019 Apr 4;380(14):1347-1358. doi: 10.1056/NEJMra1814259.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验