Suppr超能文献

在实际尺寸下理解mRNA脂质纳米颗粒的自组装和分子结构:来自超大规模模拟的见解

Understanding the self-assembly and molecular structure of mRNA lipid nanoparticles at real size: Insights from the ultra-large-scale simulation.

作者信息

Wang Ruifeng, Zhang Yunsen, Zhong Hao, Zang Jieying, Wang Wei, Cheng He, Chen Yongming, Ouyang Defang

机构信息

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.

Spallation Neutron Source Science Center, Dongguan 523803, China.

出版信息

Int J Pharm. 2025 Feb 10;670:125114. doi: 10.1016/j.ijpharm.2024.125114. Epub 2024 Dec 30.

Abstract

Messenger RNA (mRNA) encapsulated in lipid nanoparticles (LNPs) represents a cutting-edge delivery technology that played a pivotal role during the COVID-19 pandemic and in advancing vaccine development. However, molecular structure of mRNA-LNPs at real size remains poorly understood, with conflicting results from various experimental studies. In this study, we aim to explore the assembly process and structural characteristics of mRNA-LNPs at realistic sizes using coarse-grained molecular dynamic simulations. The largest system, representing a real-sized LNPs (∼ 80 nm), reaches up to ∼6 million beads, around 30 million atoms. Moreover, the impacts of different mRNA loading levels and pH changes on the structure of mRNA-LNPs are also examined. Under acidic pH, ionizable lipid (dilinoleylmethyl-4-dimethylaminobutyrate, MC3), helper lipid (cholesterol, CHOL, distearoylphosphatidyl choline, DSPC), and mRNA rapidly self-assemble into spherical-like LNPs within 50 ns, with a diameter of 51.2 nm (2 mRNA) and 75.8 nm (4 mRNA). Inside the LNPs, a continuous lipid phase is observed alongside an aqueous phase, forming a bicontinuous structure. CHOL and DSPC form lipid rafts distributed within the shell or core layer of the LNPs, enhancing rigidity and stability. Notably, mRNA aggregation within the LNPs occurs independently of the lipid environment, and different mRNA payloads significantly influence the lipid composition between the core and shell. At neutral pH, lipid clustering slightly reduces the retention capacity of LNPs for mRNA. Our findings highlight the presence of a bicontinuous structure and lipid rafts in self-assembled LNPs, which critically influence LNPs rigidity, fluidity, and mRNA delivery efficiency. This structural insight provides a foundation for the rational design of LNPs to optimize mRNA delivery in future applications.

摘要

封装在脂质纳米颗粒(LNP)中的信使核糖核酸(mRNA)是一种前沿的递送技术,在新冠疫情期间及推动疫苗研发过程中发挥了关键作用。然而,实际尺寸下mRNA-LNP的分子结构仍知之甚少,各种实验研究结果相互矛盾。在本研究中,我们旨在通过粗粒度分子动力学模拟探索实际尺寸下mRNA-LNP的组装过程和结构特征。最大的系统代表实际尺寸的LNP(约80纳米),包含多达约600万个珠子,约3000万个原子。此外,还研究了不同mRNA负载水平和pH变化对mRNA-LNP结构的影响。在酸性pH条件下,可电离脂质(二亚油基甲基-4-二甲基氨基丁酸酯,MC3)、辅助脂质(胆固醇,CHOL,二硬脂酰磷脂酰胆碱,DSPC)和mRNA在50纳秒内迅速自组装成球形LNP,直径分别为51.2纳米(2条mRNA)和75.8纳米(4条mRNA)。在LNP内部,观察到连续的脂质相和水相,形成双连续结构。CHOL和DSPC形成脂质筏,分布在LNP的壳层或核心层内,增强了刚性和稳定性。值得注意的是,LNP内的mRNA聚集独立于脂质环境发生,不同的mRNA负载量显著影响核心和壳层之间的脂质组成。在中性pH条件下,脂质聚集会略微降低LNP对mRNA的保留能力。我们的研究结果突出了自组装LNP中双连续结构和脂质筏的存在,这对LNP的刚性、流动性和mRNA递送效率至关重要。这一结构见解为合理设计LNP以优化未来应用中的mRNA递送提供了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验