Jin Kelly, Yao Zizhen, van Velthoven Cindy T J, Kaplan Eitan S, Glattfelder Katie, Barlow Samuel T, Boyer Gabriella, Carey Daniel, Casper Tamara, Chakka Anish Bhaswanth, Chakrabarty Rushil, Clark Michael, Departee Max, Desierto Marie, Gary Amanda, Gloe Jessica, Goldy Jeff, Guilford Nathan, Guzman Junitta, Hirschstein Daniel, Lee Changkyu, Liang Elizabeth, Pham Trangthanh, Reding Melissa, Ronellenfitch Kara, Ruiz Augustin, Sevigny Josh, Shapovalova Nadiya, Shulga Lyudmila, Sulc Josef, Torkelson Amy, Tung Herman, Levi Boaz, Sunkin Susan M, Dee Nick, Esposito Luke, Smith Kimberly A, Tasic Bosiljka, Zeng Hongkui
Allen Institute for Brain Science, Seattle, WA, USA.
Nature. 2025 Feb;638(8049):182-196. doi: 10.1038/s41586-024-08350-8. Epub 2025 Jan 1.
Biological ageing can be defined as a gradual loss of homeostasis across various aspects of molecular and cellular function. Mammalian brains consist of thousands of cell types, which may be differentially susceptible or resilient to ageing. Here we present a comprehensive single-cell RNA sequencing dataset containing roughly 1.2 million high-quality single-cell transcriptomes of brain cells from young adult and aged mice of both sexes, from regions spanning the forebrain, midbrain and hindbrain. High-resolution clustering of all cells results in 847 cell clusters and reveals at least 14 age-biased clusters that are mostly glial types. At the broader cell subclass and supertype levels, we find age-associated gene expression signatures and provide a list of 2,449 unique differentially expressed genes (age-DE genes) for many neuronal and non-neuronal cell types. Whereas most age-DE genes are unique to specific cell types, we observe common signatures with ageing across cell types, including a decrease in expression of genes related to neuronal structure and function in many neuron types, major astrocyte types and mature oligodendrocytes, and an increase in expression of genes related to immune function, antigen presentation, inflammation, and cell motility in immune cell types and some vascular cell types. Finally, we observe that some of the cell types that demonstrate the greatest sensitivity to ageing are concentrated around the third ventricle in the hypothalamus, including tanycytes, ependymal cells, and certain neuron types in the arcuate nucleus, dorsomedial nucleus and paraventricular nucleus that express genes canonically related to energy homeostasis. Many of these types demonstrate both a decrease in neuronal function and an increase in immune response. These findings suggest that the third ventricle in the hypothalamus may be a hub for ageing in the mouse brain. Overall, this study systematically delineates a dynamic landscape of cell-type-specific transcriptomic changes in the brain associated with normal ageing that will serve as a foundation for the investigation of functional changes in ageing and the interaction of ageing and disease.
生物衰老可定义为分子和细胞功能各个方面的内稳态逐渐丧失。哺乳动物的大脑由数千种细胞类型组成,这些细胞类型对衰老的易感性或恢复力可能存在差异。在此,我们展示了一个全面的单细胞RNA测序数据集,其中包含来自年轻成年和老年雌雄小鼠前脑、中脑和后脑区域的约120万个高质量脑细胞单细胞转录组。对所有细胞进行高分辨率聚类产生了847个细胞簇,并揭示了至少14个年龄偏向簇,其中大多数是神经胶质细胞类型。在更广泛的细胞亚类和超类型水平上,我们发现了与年龄相关的基因表达特征,并为许多神经元和非神经元细胞类型提供了一份包含2449个独特差异表达基因(年龄差异表达基因)的列表。虽然大多数年龄差异表达基因是特定细胞类型所特有的,但我们观察到不同细胞类型在衰老过程中存在共同特征,包括许多神经元类型、主要星形胶质细胞类型和成熟少突胶质细胞中与神经元结构和功能相关基因的表达下降,以及免疫细胞类型和一些血管细胞类型中与免疫功能、抗原呈递、炎症和细胞运动相关基因的表达增加。最后,我们观察到一些对衰老最敏感的细胞类型集中在下丘脑第三脑室周围,包括室管膜细胞、室管膜细胞,以及弓状核、背内侧核和室旁核中的某些神经元类型,这些神经元类型表达与能量稳态典型相关的基因。其中许多类型既表现出神经元功能下降,又表现出免疫反应增加。这些发现表明,下丘脑第三脑室可能是小鼠大脑衰老的一个枢纽。总体而言,这项研究系统地描绘了与正常衰老相关的大脑细胞类型特异性转录组变化的动态图景,这将为研究衰老过程中的功能变化以及衰老与疾病的相互作用奠定基础。