文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

分子定义和空间分辨的全鼠脑细胞图谱。

Molecularly defined and spatially resolved cell atlas of the whole mouse brain.

机构信息

Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.

出版信息

Nature. 2023 Dec;624(7991):343-354. doi: 10.1038/s41586-023-06808-9. Epub 2023 Dec 13.


DOI:10.1038/s41586-023-06808-9
PMID:38092912
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10719103/
Abstract

In mammalian brains, millions to billions of cells form complex interaction networks to enable a wide range of functions. The enormous diversity and intricate organization of cells have impeded our understanding of the molecular and cellular basis of brain function. Recent advances in spatially resolved single-cell transcriptomics have enabled systematic mapping of the spatial organization of molecularly defined cell types in complex tissues, including several brain regions (for example, refs. ). However, a comprehensive cell atlas of the whole brain is still missing. Here we imaged a panel of more than 1,100 genes in approximately 10 million cells across the entire adult mouse brains using multiplexed error-robust fluorescence in situ hybridization and performed spatially resolved, single-cell expression profiling at the whole-transcriptome scale by integrating multiplexed error-robust fluorescence in situ hybridization and single-cell RNA sequencing data. Using this approach, we generated a comprehensive cell atlas of more than 5,000 transcriptionally distinct cell clusters, belonging to more than 300 major cell types, in the whole mouse brain with high molecular and spatial resolution. Registration of this atlas to the mouse brain common coordinate framework allowed systematic quantifications of the cell-type composition and organization in individual brain regions. We further identified spatial modules characterized by distinct cell-type compositions and spatial gradients featuring gradual changes of cells. Finally, this high-resolution spatial map of cells, each with a transcriptome-wide expression profile, allowed us to infer cell-type-specific interactions between hundreds of cell-type pairs and predict molecular (ligand-receptor) basis and functional implications of these cell-cell interactions. These results provide rich insights into the molecular and cellular architecture of the brain and a foundation for functional investigations of neural circuits and their dysfunction in health and disease.

摘要

在哺乳动物大脑中,数以百万计到数十亿计的细胞形成复杂的相互作用网络,从而实现广泛的功能。细胞的巨大多样性和复杂组织极大地阻碍了我们对大脑功能的分子和细胞基础的理解。近年来,基于空间分辨的单细胞转录组学的进展使得能够系统地绘制复杂组织中分子定义的细胞类型的空间组织图谱,包括几个脑区(例如,参考文献)。然而,整个大脑的综合细胞图谱仍然缺失。在这里,我们使用多重抗误差荧光原位杂交技术对整个成年小鼠大脑中约 1000 万个细胞中的 1100 多个以上的基因进行了成像,并通过整合多重抗误差荧光原位杂交和单细胞 RNA 测序数据进行了空间分辨的单细胞全转录组表达谱分析。通过这种方法,我们以高分子和空间分辨率生成了整个小鼠大脑中超过 5000 个转录上不同的细胞簇的综合细胞图谱,这些细胞簇属于 300 多种主要细胞类型。将这个图谱与小鼠大脑共同坐标框架进行配准,允许对单个脑区中的细胞类型组成和组织进行系统的量化。我们进一步鉴定了具有独特细胞类型组成和空间梯度的空间模块,这些梯度以细胞的渐变变化为特征。最后,这个具有高分辨率的细胞空间图谱,每个细胞都具有全转录组表达谱,使我们能够推断数百对细胞类型之间的细胞类型特异性相互作用,并预测这些细胞-细胞相互作用的分子(配体-受体)基础和功能意义。这些结果为大脑的分子和细胞结构提供了丰富的见解,并为神经回路的功能研究及其在健康和疾病中的功能障碍提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/9a661c99b4f3/41586_2023_6808_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/c52bb8f009cf/41586_2023_6808_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/a40f4dec3c60/41586_2023_6808_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/f75e3d6d159e/41586_2023_6808_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/bfd1084daeae/41586_2023_6808_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/6c007852ea2d/41586_2023_6808_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/2c4b566094fe/41586_2023_6808_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/51f9d2faeb1c/41586_2023_6808_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/ed2cb187deec/41586_2023_6808_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/96de37e11edc/41586_2023_6808_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/4b8e52562e05/41586_2023_6808_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/19f50b66573e/41586_2023_6808_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/2b59c5591f4b/41586_2023_6808_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/6d81ad27ab0f/41586_2023_6808_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/c25501965929/41586_2023_6808_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/095edf56b518/41586_2023_6808_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/9a661c99b4f3/41586_2023_6808_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/c52bb8f009cf/41586_2023_6808_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/a40f4dec3c60/41586_2023_6808_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/f75e3d6d159e/41586_2023_6808_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/bfd1084daeae/41586_2023_6808_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/6c007852ea2d/41586_2023_6808_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/2c4b566094fe/41586_2023_6808_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/51f9d2faeb1c/41586_2023_6808_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/ed2cb187deec/41586_2023_6808_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/96de37e11edc/41586_2023_6808_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/4b8e52562e05/41586_2023_6808_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/19f50b66573e/41586_2023_6808_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/2b59c5591f4b/41586_2023_6808_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/6d81ad27ab0f/41586_2023_6808_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/c25501965929/41586_2023_6808_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/095edf56b518/41586_2023_6808_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7e/10719103/9a661c99b4f3/41586_2023_6808_Fig16_ESM.jpg

相似文献

[1]
Molecularly defined and spatially resolved cell atlas of the whole mouse brain.

Nature. 2023-12

[2]
A molecularly defined and spatially resolved cell atlas of the whole mouse brain.

bioRxiv. 2023-3-7

[3]
A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain.

Nature. 2023-12

[4]
Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH.

Nature. 2021-10

[5]
Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities.

Genome Res. 2021-10

[6]
Computational solutions for spatial transcriptomics.

Comput Struct Biotechnol J. 2022-9-1

[7]
Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression.

Proc Natl Acad Sci U S A. 2019-9-9

[8]
Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH.

Science. 2022-7

[9]
RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells.

Science. 2015-4-24

[10]
Spatially resolved whole transcriptome profiling in human and mouse tissue using Digital Spatial Profiling.

Genome Res. 2022-10

引用本文的文献

[1]
Looking at Both Sides: Integrating Data From Both Hemispheres Is Crucial in Rodent Neuroscience.

Eur J Neurosci. 2025-9

[2]
Benchmarking sketching methods on spatial transcriptomics data.

bioRxiv. 2025-9-2

[3]
MCA: A Multicellular analysis Calcium Imaging toolbox for ImageJ.

bioRxiv. 2025-8-23

[4]
Protocol optimization improves the performance of multiplexed RNA imaging.

Sci Rep. 2025-8-31

[5]
Deciphering transcriptomic changes in chemobrain: a comprehensive review.

Acta Neuropathol Commun. 2025-8-30

[6]
DECIPHER for learning disentangled cellular embeddings in large-scale heterogeneous spatial omics data.

Nat Commun. 2025-8-27

[7]
Reconstruction of a connectome of single neurons in mouse brains by cross-validating multi-scale multi-modality data.

Nat Methods. 2025-8-26

[8]
Dopaminergic signaling regulates microglial surveillance and adolescent plasticity in the mouse frontal cortex.

Nat Commun. 2025-8-26

[9]
A spatial single-cell atlas of the claustro-insular region uncovers key regulators of neuronal identity and excitability.

Nat Commun. 2025-8-22

[10]
An extended and improved CCFv3 annotation and Nissl atlas of the entire mouse brain.

Imaging Neurosci (Camb). 2025-5-21

本文引用的文献

[1]
Cellpose 2.0: how to train your own model.

Nat Methods. 2022-12

[2]
Parvalbumin and parvalbumin chandelier interneurons in autism and other psychiatric disorders.

Front Psychiatry. 2022-10-12

[3]
Deletion of Wnt10a Is Implicated in Hippocampal Neurodegeneration in Mice.

Biomedicines. 2022-6-25

[4]
A transcriptomic axis predicts state modulation of cortical interneurons.

Nature. 2022-7

[5]
Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH.

Science. 2022-7

[6]
Single-cell profiling of human subventricular zone progenitors identifies SFRP1 as a target to re-activate progenitors.

Nat Commun. 2022-2-24

[7]
Decoding molecular and cellular heterogeneity of mouse nucleus accumbens.

Nat Neurosci. 2021-12

[8]
A transcriptomic atlas of mouse cerebellar cortex comprehensively defines cell types.

Nature. 2021-10

[9]
Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH.

Nature. 2021-10

[10]
DNA methylation atlas of the mouse brain at single-cell resolution.

Nature. 2021-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索