Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
Nature. 2023 Dec;624(7991):343-354. doi: 10.1038/s41586-023-06808-9. Epub 2023 Dec 13.
In mammalian brains, millions to billions of cells form complex interaction networks to enable a wide range of functions. The enormous diversity and intricate organization of cells have impeded our understanding of the molecular and cellular basis of brain function. Recent advances in spatially resolved single-cell transcriptomics have enabled systematic mapping of the spatial organization of molecularly defined cell types in complex tissues, including several brain regions (for example, refs. ). However, a comprehensive cell atlas of the whole brain is still missing. Here we imaged a panel of more than 1,100 genes in approximately 10 million cells across the entire adult mouse brains using multiplexed error-robust fluorescence in situ hybridization and performed spatially resolved, single-cell expression profiling at the whole-transcriptome scale by integrating multiplexed error-robust fluorescence in situ hybridization and single-cell RNA sequencing data. Using this approach, we generated a comprehensive cell atlas of more than 5,000 transcriptionally distinct cell clusters, belonging to more than 300 major cell types, in the whole mouse brain with high molecular and spatial resolution. Registration of this atlas to the mouse brain common coordinate framework allowed systematic quantifications of the cell-type composition and organization in individual brain regions. We further identified spatial modules characterized by distinct cell-type compositions and spatial gradients featuring gradual changes of cells. Finally, this high-resolution spatial map of cells, each with a transcriptome-wide expression profile, allowed us to infer cell-type-specific interactions between hundreds of cell-type pairs and predict molecular (ligand-receptor) basis and functional implications of these cell-cell interactions. These results provide rich insights into the molecular and cellular architecture of the brain and a foundation for functional investigations of neural circuits and their dysfunction in health and disease.
在哺乳动物大脑中,数以百万计到数十亿计的细胞形成复杂的相互作用网络,从而实现广泛的功能。细胞的巨大多样性和复杂组织极大地阻碍了我们对大脑功能的分子和细胞基础的理解。近年来,基于空间分辨的单细胞转录组学的进展使得能够系统地绘制复杂组织中分子定义的细胞类型的空间组织图谱,包括几个脑区(例如,参考文献)。然而,整个大脑的综合细胞图谱仍然缺失。在这里,我们使用多重抗误差荧光原位杂交技术对整个成年小鼠大脑中约 1000 万个细胞中的 1100 多个以上的基因进行了成像,并通过整合多重抗误差荧光原位杂交和单细胞 RNA 测序数据进行了空间分辨的单细胞全转录组表达谱分析。通过这种方法,我们以高分子和空间分辨率生成了整个小鼠大脑中超过 5000 个转录上不同的细胞簇的综合细胞图谱,这些细胞簇属于 300 多种主要细胞类型。将这个图谱与小鼠大脑共同坐标框架进行配准,允许对单个脑区中的细胞类型组成和组织进行系统的量化。我们进一步鉴定了具有独特细胞类型组成和空间梯度的空间模块,这些梯度以细胞的渐变变化为特征。最后,这个具有高分辨率的细胞空间图谱,每个细胞都具有全转录组表达谱,使我们能够推断数百对细胞类型之间的细胞类型特异性相互作用,并预测这些细胞-细胞相互作用的分子(配体-受体)基础和功能意义。这些结果为大脑的分子和细胞结构提供了丰富的见解,并为神经回路的功能研究及其在健康和疾病中的功能障碍提供了基础。
Comput Struct Biotechnol J. 2022-9-1
Proc Natl Acad Sci U S A. 2019-9-9
bioRxiv. 2025-9-2
bioRxiv. 2025-8-23
Acta Neuropathol Commun. 2025-8-30
Imaging Neurosci (Camb). 2025-5-21
Nat Methods. 2022-12
Front Psychiatry. 2022-10-12
Biomedicines. 2022-6-25
Nat Neurosci. 2021-12