Tang Rujuan, Yuan Xiaona, Yang Wenxin, Zhang Haiyan, Lu Yan, Zhang Renjie
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education of the P. R. China, Shandong University, Jinan, 250100, P. R. China.
Small. 2025 Feb;21(7):e2410264. doi: 10.1002/smll.202410264. Epub 2025 Jan 2.
The dual-site electrocatalysts formed by metal single atoms combines with metal nanoparticles represent a promising strategy to enhance both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance. Herein, defect engineering is applied to dual-site ORR and OER electrocatalysts. Its design, synthesis, structural properties, and catalytic performance experimentally and theoretically are insightfully studied for the single-atomic Fe─N and the adjacent FeCo nanoalloy (FeCo) as dual-site loading on nitrogen-doped graphene aerogel (Fe─N/FeCo@NGA). The high-density dual-sites, together with the good electronic conductivity of NGA, synergistically improve the electronic structure for superior electrocatalytic activity. The half-wave potential of Fe─N/FeCo@NGA in ORR is 0.92 V and the overpotential of it in OER is 1.58 V. Corresponding all-solid-state Zn-air battery demonstrates a peak power density of 147.6 mW cm and charge/discharge durability for over 140 h. Theoretical calculations reveal that the single-atomic Fe-N and FeCo dual-site on the skeleton defect optimized NGA, further refine the local electronic structure, modulating the tensile force on the O─O bond in OOH intermediate, leading to its spontaneous dissociation and facilitating a significantly reduced energy barrier. This work takes a promising shortcut in the application of defect engineering for the development of highly efficient dual-site bifunctional oxygen electrocatalysts with single atoms.
由金属单原子与金属纳米颗粒形成的双位点电催化剂是一种提升氧还原反应(ORR)和析氧反应(OER)性能的很有前景的策略。在此,缺陷工程被应用于双位点ORR和OER电催化剂。针对负载于氮掺杂石墨烯气凝胶(Fe─N/FeCo@NGA)上的单原子Fe─N和相邻的FeCo纳米合金(FeCo)这种双位点,对其设计、合成、结构性质以及催化性能进行了深入的实验和理论研究。高密度的双位点,连同NGA良好的电子导电性,协同改善电子结构以实现卓越的电催化活性。Fe─N/FeCo@NGA在ORR中的半波电位为0.92 V,在OER中的过电位为1.58 V。相应的全固态锌空气电池展现出147.6 mW cm的峰值功率密度以及超过140 h的充放电耐久性。理论计算表明,骨架缺陷优化的NGA上的单原子Fe-N和FeCo双位点进一步细化了局部电子结构,调节了OOH中间体中O─O键上的拉力,导致其自发解离并显著降低了能垒。这项工作在应用缺陷工程开发具有单原子的高效双位点双功能氧电催化剂方面迈出了一条很有前景的捷径。