Suppr超能文献

基于放射组学和剂量学参数的列线图预测接受免疫治疗联合放疗的非小细胞肺癌患者放射性食管炎的发生。

Radiomic and dosimetric parameter-based nomogram predicts radiation esophagitis in patients with non-small cell lung cancer undergoing combined immunotherapy and radiotherapy.

作者信息

Wang Kang, Zhao Junfeng, Duan Jinghao, Feng Changxing, Li Ying, Li Li, Yuan Shuanghu

机构信息

Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China.

Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, Shandong, China.

出版信息

Front Oncol. 2024 Dec 18;14:1490348. doi: 10.3389/fonc.2024.1490348. eCollection 2024.

Abstract

BACKGROUND

The combination of immune checkpoint inhibitors (ICIs) and radiotherapy (RT) may increase the risk of radiation esophagitis (RE). This study aimed to establish and validate a new nomogram to predict RE in patients with non-small cell lung cancer (NSCLC) undergoing immunochemotherapy followed by RT (ICI-RT).

METHODS

The 102 eligible patients with NSCLC treated with ICI-RT were divided into training (n = 71) and validation (n = 31) cohorts. Clinicopathologic features, dosimetric parameters, inflammatory markers, and radiomic score (Rad-score) were included in the univariate logistic regression analysis, and factors with < 0.05 in the univariate analysis were included in the multivariate logistic regression analysis. Factors with significant predictive values were obtained and used for developing the nomogram. The area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve were used to validate the model.

RESULTS

A total of 38 (37.3%) patients developed RE. Univariate and multivariate analyses identified the following independent predictors of RE: a maximum dose delivered to the esophagus >58.4 Gy, a mean esophagus dose >13.3 Gy, and the Rad-score. The AUCs of the nomogram in the training and validation cohorts were 0.918 (95% confidence interval [CI]: 0.824-1.000) and 0.833 (95% CI: 0.697-0.969), respectively, indicating good discrimination. The calibration curves showed good agreement between the predicted occurrence of RE and the actual observations. The decision curve showed a satisfactory positive net benefit at most threshold probabilities, suggesting a good clinical effect.

CONCLUSIONS

We developed and validated a nomogram based on imaging histological features and RT dosimetric parameters. This model can effectively predict the occurrence of RE in patients with NSCLC treated using ICI-RT.

摘要

背景

免疫检查点抑制剂(ICIs)与放射治疗(RT)联合使用可能会增加放射性食管炎(RE)的风险。本研究旨在建立并验证一种新的列线图,以预测接受免疫化疗后再进行放疗(ICI-RT)的非小细胞肺癌(NSCLC)患者发生RE的风险。

方法

102例接受ICI-RT治疗的符合条件的NSCLC患者被分为训练队列(n = 71)和验证队列(n = 31)。单因素逻辑回归分析纳入了临床病理特征、剂量学参数、炎症标志物和放射组学评分(Rad-score),单因素分析中P < 0.05的因素纳入多因素逻辑回归分析。获得具有显著预测价值的因素并用于构建列线图。采用受试者操作特征曲线(AUC)下面积、校准曲线和决策曲线对模型进行验证。

结果

共有38例(37.3%)患者发生RE。单因素和多因素分析确定了以下RE的独立预测因素:食管接受的最大剂量>58.4 Gy、食管平均剂量>13.3 Gy和Rad-score。训练队列和验证队列中列线图的AUC分别为0.918(95%置信区间[CI]:0.824 - 1.000)和0.833(95% CI:0.697 - 0.969),表明具有良好的区分度。校准曲线显示RE的预测发生率与实际观察结果之间具有良好的一致性。决策曲线显示在大多数阈值概率下具有令人满意的正净效益,表明临床效果良好。

结论

我们基于影像组织学特征和放疗剂量学参数建立并验证了一种列线图。该模型可以有效预测接受ICI-RT治疗的NSCLC患者发生RE的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e71/11688372/5c363dc05753/fonc-14-1490348-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验