Suppr超能文献

基于锥形束CT影像组学分析技术的新型列线图模型预测食管癌放疗患者放射性肺炎

A Novel Nomogram Model Based on Cone-Beam CT Radiomics Analysis Technology for Predicting Radiation Pneumonitis in Esophageal Cancer Patients Undergoing Radiotherapy.

作者信息

Du Feng, Tang Ning, Cui Yuzhong, Wang Wei, Zhang Yingjie, Li Zhenxiang, Li Jianbin

机构信息

Department of Radiation Oncology, School of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.

Department of Radiation Oncology, Zibo Municipal Hospital, Zibo, China.

出版信息

Front Oncol. 2020 Dec 17;10:596013. doi: 10.3389/fonc.2020.596013. eCollection 2020.

Abstract

PURPOSE

We quantitatively analyzed the characteristics of cone-beam computed tomography (CBCT) radiomics in different periods during radiotherapy (RT) and then built a novel nomogram model integrating clinical features and dosimetric parameters for predicting radiation pneumonitis (RP) in patients with esophageal squamous cell carcinoma (ESCC).

METHODS

At our institute, a retrospective study was conducted on 96 ESCC patients for whom we had complete clinical feature and dosimetric parameter data. CBCT images of each patient in three different periods of RT were obtained, the images were segmented using both lungs as the region of interest (ROI), and 851 image features were extracted. The least absolute shrinkage selection operator (LASSO) was applied to identify candidate radiomics features, and logistic regression analyses were applied to construct the rad-score. The optimal period for the rad-score, clinical features, and dosimetric parameters were selected to construct the nomogram model and then the receiver operating characteristic (ROC) curve was used to evaluate the prediction capacity of the model. Calibration curves and decision curves were used to demonstrate the discriminatory and clinical benefit ratios, respectively.

RESULTS

The relative volume of total lung treated with ≥5 Gy (V5), mean lung dose (MLD), and tumor stage were independent predictors of RP and were finally incorporated into the nomogram. When the three time periods were modeled, the first period was better than the others. In the primary cohort, the area under the ROC curve (AUC) was 0.700 (95% confidence interval (CI) 0.568-0.832), and in the independent validation cohort, the AUC was 0.765 (95% CI 0.588-0.941). In the nomogram model that integrates clinical features and dosimetric parameters, the AUC in the primary cohort was 0.836 (95% CI 0.700-0.918), and the AUC in the validation cohort was 0.905 (95% CI 0.799-1.000). The nomogram model exhibits excellent performance. Calibration curves indicate a favorable consistency between the nomogram prediction and the actual outcomes. The decision curve exhibits satisfactory clinical utility.

CONCLUSION

The radiomics model based on early lung CBCT is a potentially valuable tool for predicting RP. V5, MLD, and tumor stage have certain predictive effects for RP. The developed nomogram model has a better prediction ability than any of the other predictors and can be used as a quantitative model to predict RP.

摘要

目的

我们定量分析了放射治疗(RT)不同阶段锥形束计算机断层扫描(CBCT)影像组学的特征,然后构建了一个整合临床特征和剂量学参数的新型列线图模型,用于预测食管鳞状细胞癌(ESCC)患者的放射性肺炎(RP)。

方法

在我们研究所,对96例具有完整临床特征和剂量学参数数据的ESCC患者进行了一项回顾性研究。获取了每位患者在RT三个不同阶段的CBCT图像,以双肺作为感兴趣区域(ROI)对图像进行分割,并提取了851个图像特征。应用最小绝对收缩选择算子(LASSO)识别候选影像组学特征,并应用逻辑回归分析构建放射学评分(rad-score)。选择rad-score、临床特征和剂量学参数的最佳阶段来构建列线图模型,然后使用受试者操作特征(ROC)曲线评估模型的预测能力。校准曲线和决策曲线分别用于展示鉴别能力和临床获益率。

结果

接受≥5 Gy照射的全肺相对体积(V5)、平均肺剂量(MLD)和肿瘤分期是RP的独立预测因素,最终被纳入列线图。对三个时间段进行建模时,第一个时间段优于其他时间段。在初级队列中,ROC曲线下面积(AUC)为0.700(95%置信区间(CI)0.568 - 0.832),在独立验证队列中,AUC为0.765(95% CI 0.588 - 0.941)。在整合临床特征和剂量学参数的列线图模型中,初级队列中的AUC为0.836(95% CI 0.700 - 0.918),验证队列中的AUC为0.905(95% CI 0.799 - 1.000)。列线图模型表现出优异的性能。校准曲线表明列线图预测与实际结果之间具有良好的一致性。决策曲线显示出令人满意的临床实用性。

结论

基于早期肺部CBCT的影像组学模型是预测RP的一种潜在有价值的工具。V5、MLD和肿瘤分期对RP有一定的预测作用。所开发的列线图模型比其他任何预测因素都具有更好的预测能力,可作为预测RP的定量模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7cd/7774595/3e1e5b83bc91/fonc-10-596013-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验