Suppr超能文献

一种理解职业心理困扰的网络分析方法:探究中国医护人员的抑郁、焦虑和职业倦怠之间的联系

A network approach to understanding occupational psychological distress: linking depression, anxiety, and burnout among Chinese healthcare professionals.

作者信息

Yang Cui, Chen Yao, Wang Xuelian, Xu Ping, Song Juan, Yang Lu, Fu Yue

机构信息

Department of Emergency, Zigong Fourth People's Hospital, Zigong, Sichuan, China.

Department of Nursing, Zigong Fourth People's Hospital, Zigong, Sichuan, China.

出版信息

Front Psychol. 2024 Dec 18;15:1474523. doi: 10.3389/fpsyg.2024.1474523. eCollection 2024.

Abstract

OBJECTIVES

As a population at high risk for psychological distress, healthcare workers typically experience varying degrees of anxiety, depression, and burnout. Studies have found that depression and anxiety have a negative impact on the mental health domain of burnout in healthcare workers. However, little is known about the symptom-to-symptom interactions between these psychological outcomes. This study aims to elucidate the characteristics of depression, anxiety, and burnout networks among healthcare workers.

METHODS

We recruited 846 healthcare workers from March to April 2023 from three hospitals. A total of 826 healthcare workers completed the General Information Scale, the 16-item Quick Inventory of Depressive Symptomatology-Self-Report (QIDS-SR16), the Self-rating Anxiety Scale (SAS), and the Burnout Clinical Subtype Questionnaire (BCSQ)-36. The network models were constructed using network analysis. The expected influence and the bridge expected influence of nodes were calculated. The stability and accuracy of the network was assessed.

RESULTS

The results showed that the core symptoms in the symptom network mainly included QIDS8 (Energy/Fatigability), SAS3 (Easily upset or frightened), SAS11 (Dizzy), SAS8 (Tiredness), SAS10 (Tachycardia) and BCSQ3 (Worn-out), and the key nodes connecting these symptoms were QIDS2 (Sad mood), SAS20 (Have nightmares), BCSQ3 (Worn-out), SAS8 (Tiredness), QIDS8 (Energy/Fatigability), QIDS4 (Concentration/decision-making) and SAS4 (Madness).

CONCLUSION

Unique pathways of association between burnout, depression, and anxiety were found to exist. Interventions targeting core symptoms can maximize the improvement of depression, anxiety, and burnout, provide a deeper understanding of the relationship between the three conditions, and provide a target and basis for psychological interventions to improve the emotional wellbeing of healthcare workers and enhance their mental health.

摘要

目的

作为心理困扰的高危人群,医护人员通常会经历不同程度的焦虑、抑郁和职业倦怠。研究发现,抑郁和焦虑会对医护人员职业倦怠的心理健康领域产生负面影响。然而,对于这些心理结果之间症状与症状的相互作用知之甚少。本研究旨在阐明医护人员中抑郁、焦虑和职业倦怠网络的特征。

方法

2023年3月至4月,我们从三家医院招募了846名医护人员。共有826名医护人员完成了一般信息量表、16项抑郁症状快速自评量表(QIDS-SR16)、自评焦虑量表(SAS)和职业倦怠临床亚型问卷(BCSQ)-36。使用网络分析构建网络模型。计算节点的预期影响和桥梁预期影响。评估网络的稳定性和准确性。

结果

结果表明,症状网络中的核心症状主要包括QIDS8(精力/疲劳)、SAS3(容易心烦或害怕)、SAS11(头晕)、SAS8(疲倦)、SAS10(心动过速)和BCSQ3(精疲力竭),连接这些症状的关键节点是QIDS2(悲伤情绪)、SAS20(做噩梦)、BCSQ3(精疲力竭)、SAS8(疲倦)、QIDS8(精力/疲劳)、QIDS4(注意力/决策)和SAS4(疯狂)。

结论

发现职业倦怠、抑郁和焦虑之间存在独特的关联途径。针对核心症状的干预措施可以最大限度地改善抑郁、焦虑和职业倦怠,更深入地理解这三种情况之间的关系,并为心理干预提供目标和依据,以改善医护人员的情绪健康,增强他们的心理健康。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed5b/11690034/fd64baa5b94b/fpsyg-15-1474523-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验