Suppr超能文献

随机生存森林预测转移性喉癌和下咽癌患者的生存情况以及手术和放疗的预后益处。

Random survival forest predicts survival in patients with metastatic laryngeal and hypopharyngeal cancer and the prognostic benefits of surgery and radiotherapy.

作者信息

Wang Yusheng, Li Chaofan, Yang Feilun, Gong Minjie, Qu Jingkun, Ma Ruiping, Hu Zhenzhen, Lou Miao, Ren Xiaoyong, Zheng Guoxi, Bai Yanxia, Zhang Ya, Hou Jin

机构信息

Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.

The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.

出版信息

J Cancer. 2025 Jan 1;16(2):603-621. doi: 10.7150/jca.103793. eCollection 2025.

Abstract

Laryngeal and hypopharyngeal cancers are prominent within head and neck malignancies. The diagnosis of distant metastasis (DM) invariably signals poor prognosis, underscoring the need to optimize current treatment approaches. Patient data for metastatic laryngeal and hypopharyngeal cancer were extracted from the SEER database (2000-2020). Cox regression and propensity score matching (PSM) analyses identified independent prognostic factors and performed stratified survival analyses based on the receipt of primary tumor surgery and radiotherapy. A random survival forest (RSF) model was subsequently developed to predict patient survival. A total of 1,626 patients were included. PSM-based stratified analysis revealed that primary tumor surgery significantly improved survival in patients under 70 years and those with primary laryngeal cancer. Radiotherapy enhanced survival across all age groups, with a benefit primarily for patients with primary laryngeal cancer and squamous-cell carcinoma (SCC). The RSF model demonstrated robust predictive performance, highlighting chemotherapy, primary tumor surgery, and radiotherapy as the top three factors influencing patient survival. The clinical and pathological features of metastatic laryngeal/hypopharyngeal cancer were systematically analyzed using an artificial intelligence (AI) model to predict survival. Subgroup analyses identified patients most likely to benefit from primary tumor surgery and radiotherapy. These findings may guide the development of personalized treatment strategies, potentially improving the prognosis of patients with DM.

摘要

喉癌和下咽癌在头颈部恶性肿瘤中较为突出。远处转移(DM)的诊断始终预示着预后不良,这凸显了优化当前治疗方法的必要性。从监测、流行病学和最终结果(SEER)数据库(2000 - 2020年)中提取转移性喉癌和下咽癌的患者数据。Cox回归和倾向评分匹配(PSM)分析确定了独立的预后因素,并根据原发肿瘤手术和放疗的接受情况进行分层生存分析。随后开发了随机生存森林(RSF)模型来预测患者生存。总共纳入了1626例患者。基于PSM的分层分析显示,原发肿瘤手术显著改善了70岁以下患者和原发性喉癌患者的生存。放疗提高了所有年龄组的生存率,主要对原发性喉癌和鳞状细胞癌(SCC)患者有益。RSF模型显示出强大的预测性能,突出了化疗、原发肿瘤手术和放疗是影响患者生存的三大因素。使用人工智能(AI)模型系统分析了转移性喉癌/下咽癌的临床和病理特征以预测生存。亚组分析确定了最有可能从原发肿瘤手术和放疗中获益的患者。这些发现可能指导个性化治疗策略的制定, potentially improving the prognosis of patients with DM.(原文此处有误,结合前文推测应为“可能改善远处转移患者的预后”)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c80/11685675/f03a55a5081e/jcav16p0603g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验