Suppr超能文献

哪种模型更能预测喉鳞状细胞癌的生存情况?:基于机器学习算法的随机生存森林与 Cox 回归的比较:基于 SEER 数据库的分析。

Which model is better in predicting the survival of laryngeal squamous cell carcinoma?: Comparison of the random survival forest based on machine learning algorithms to Cox regression: analyses based on SEER database.

机构信息

Ping Yang Hospital Affiliated to Wenzhou Medical University, Wenzhou, China.

Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.

出版信息

Medicine (Baltimore). 2023 Mar 10;102(10):e33144. doi: 10.1097/MD.0000000000033144.

Abstract

Prediction of postoperative survival for laryngeal carcinoma patients is very important. This study attempts to demonstrate the utilization of the random survival forest (RSF) and Cox regression model to predict overall survival of laryngeal squamous cell carcinoma (LSCC) and compare their performance. A total of 8677 patients diagnosed with LSCC from 2004 to 2015 were obtained from surveillance, epidemiology, and end results database. Multivariate imputation by chained equations was applied to filling the missing data. Lasso regression algorithm was conducted to find potential predictors. RSF and Cox regression were used to develop the survival prediction models. Harrell's concordance index (C-index), area under the curve (AUC), Brier score, and calibration plot were used to evaluate the predictive performance of the 2 models. For 3-year survival prediction, the C-index in training set were 0.74 (0.011) and 0.84 (0.013) for Cox and RSF respectively. For 5-year survival prediction, the C-index in training set were 0.75 (0.022) and 0.80 (0.011) for Cox and RSF respectively. Similar results were found in validation set. The AUC were 0.795 for RSF and 0.715 for Cox in the training set while the AUC were 0.765 for RSF and 0.705 for Cox in the validation set. The prediction error curves for each model based on Brier score showed the RSF model had lower prediction errors both in training group and validation group. What's more, the calibration curve displayed similar results of 2 models both in training set and validation set. The performance of RSF model were better than Cox regression model. The RSF algorithms provide a relatively better alternatives to be of clinical use for estimating the survival probability of LSCC patients.

摘要

预测喉癌患者的术后生存情况非常重要。本研究旨在展示随机生存森林(RSF)和 Cox 回归模型在预测喉鳞状细胞癌(LSCC)总生存率方面的应用,并比较其性能。从监测、流行病学和最终结果数据库中获得了 2004 年至 2015 年间诊断为 LSCC 的 8677 例患者。采用链式方程的多变量插补方法来填补缺失数据。应用 Lasso 回归算法寻找潜在的预测因子。采用 RSF 和 Cox 回归建立生存预测模型。采用 Harrell 一致性指数(C-index)、曲线下面积(AUC)、Brier 评分和校准图来评估两种模型的预测性能。对于 3 年生存率预测,C-index 在训练集分别为 0.74(0.011)和 0.84(0.013),Cox 和 RSF 模型。对于 5 年生存率预测,C-index 在训练集分别为 0.75(0.022)和 0.80(0.011),Cox 和 RSF 模型。验证集也得到了类似的结果。在训练集中,RSF 的 AUC 为 0.795,Cox 的 AUC 为 0.715,而在验证集中,RSF 的 AUC 为 0.765,Cox 的 AUC 为 0.705。基于 Brier 评分的各模型预测误差曲线显示,RSF 模型在训练组和验证组的预测误差均较低。此外,校准曲线显示,两种模型在训练集和验证集均显示出相似的结果。RSF 模型的性能优于 Cox 回归模型。RSF 算法为估计 LSCC 患者的生存率提供了一种相对较好的临床应用替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3c9/9997795/6a0276292693/medi-102-e33144-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验