Santos-Báez Leinys S, Diaz-Rizzolo Diana A, Borhan Rabiah, Popp Collin J, Sordi-Guth Ana, DeBonis Danny, Manoogian Emily N C, Panda Satchidananda, Cheng Bin, Laferrère Blandine
Department of Medicine, Division of Endocrinology, Diabetes Research Center, Columbia University Irving Medical Center, New York, New York, USA.
Health Science Faculty, Universitat Oberta de Catalunya (UOC), Barcelona, Spain.
Diabetes Obes Metab. 2025 Mar;27(3):1515-1525. doi: 10.1111/dom.16160. Epub 2025 Jan 2.
Post-prandial glucose response (PPGR) is a risk factor for cardiovascular disease. Meal carbohydrate content is an important predictor of PPGR, but dietary interventions to mitigate PPGR are not always successful. A personalized approach, considering behaviour and habitual pattern of glucose excursions assessed by continuous glucose monitor (CGM), may be more effective.
Data were collected under free-living conditions, over 2 weeks, in older adults (age 60 ± 7, BMI 33.0 ± 6.6 kg/m), with prediabetes (n = 35) or early onset type 2 diabetes (n = 3), together with sleep and physical activity by actigraphy. We assessed the predictive value of habitual CGM glucose excursions and fasting glucose on PPGR after a research meal (hereafter MEAL-PPGR) and during an oral glucose tolerance test (hereafter OGTT-PPGR).
Mean amplitude of glucose excursions (MAGE) and fasting glucose were highly predictive of all measures of OGTT-PPGR (AUC, peak, delta, mean glucose and glucose at 120 min; R between 0.616 and 0.786). Measures of insulin sensitivity and β-cell function (Matsuda index, HOMA-B and HOMA-IR) strengthened the prediction of fasting glucose and MAGE (R range 0.651 to 0.832). Similarly, MAGE and premeal glucose were also strong predictors of MEAL-PPGR (R range 0.546 to 0.722). Meal carbohydrates strengthened the prediction of 3 h AUC (R increase from 0.723 to 0.761). Neither anthropometrics, age nor habitual sleep and physical activity added to the prediction models significantly.
These data support a CGM-guided personalized nutrition and medicine approach to control PPGR in older individuals with prediabetes and diet and/or metformin-treated type 2 diabetes.
餐后血糖反应(PPGR)是心血管疾病的一个危险因素。膳食碳水化合物含量是PPGR的一个重要预测指标,但减轻PPGR的饮食干预并不总是成功的。考虑到通过持续葡萄糖监测(CGM)评估的葡萄糖波动行为和习惯模式的个性化方法可能更有效。
在自由生活条件下,对年龄在60±7岁、体重指数为33.0±6.6kg/m²的患有糖尿病前期(n = 35)或早发型2型糖尿病(n = 3)的老年人,通过活动记录仪收集其2周内的睡眠和身体活动数据。我们评估了习惯性CGM葡萄糖波动和空腹血糖对研究餐(以下简称餐时PPGR)和口服葡萄糖耐量试验(以下简称OGTT-PPGR)后PPGR的预测价值。
葡萄糖波动平均幅度(MAGE)和空腹血糖对OGTT-PPGR的所有指标(曲线下面积、峰值、变化量、平均血糖和120分钟时的血糖;R在0.616至0.786之间)具有高度预测性。胰岛素敏感性和β细胞功能指标(松田指数、HOMA-B和HOMA-IR)加强了对空腹血糖和MAGE的预测(R范围为0.651至0.832)。同样,MAGE和餐前血糖也是餐时PPGR的强预测指标(R范围为0.546至0.722)。膳食碳水化合物加强了对3小时曲线下面积的预测(R从0.723增加到0.761)。人体测量学指标、年龄以及习惯性睡眠和身体活动均未显著增加预测模型的预测能力。
这些数据支持采用CGM指导的个性化营养和医学方法来控制患有糖尿病前期以及接受饮食和/或二甲双胍治疗的2型糖尿病老年人的PPGR。