Suppr超能文献

通过机器学习推进天然有机物的微纳超分子组装机制以揭示环境地球化学过程

Advancing micro-nano supramolecular assembly mechanisms of natural organic matter by machine learning for unveiling environmental geochemical processes.

作者信息

Zhang Ming, Deng Yihui, Zhou Qianwei, Gao Jing, Zhang Daoyong, Pan Xiangliang

机构信息

College of Geoinformatics, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.

College of Environment, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.

出版信息

Environ Sci Process Impacts. 2025 Jan 22;27(1):24-45. doi: 10.1039/d4em00662c.

Abstract

The nano-self-assembly of natural organic matter (NOM) profoundly influences the occurrence and fate of NOM and pollutants in large-scale complex environments. Machine learning (ML) offers a promising and robust tool for interpreting and predicting the processes, structures and environmental effects of NOM self-assembly. This review seeks to provide a tutorial-like compilation of data source determination, algorithm selection, model construction, interpretability analyses, applications and challenges for big-data-based ML aiming at elucidating NOM self-assembly mechanisms in environments. The results from advanced nano-submicron-scale spatial chemical analytical technologies are suggested as input data which provide the combined information of molecular interactions and structural visualization. The existing ML algorithms need to handle multi-scale and multi-modal data, necessitating the development of new algorithmic frameworks. Interpretable supervised models are crucial owing to their strong capacity of quantifying the structure-property-effect relationships and bridging the gap between simply data-driven ML and complicated NOM assembly practice. Then, the necessity and challenges are discussed and emphasized on adopting ML to understand the geochemical behaviors and bioavailability of pollutants as well as the elemental cycling processes in environments resulting from the NOM self-assembly patterns. Finally, a research framework integrating ML, experiments and theoretical simulation is proposed for comprehensively and efficiently understanding the NOM self-assembly-involved environmental issues.

摘要

天然有机物(NOM)的纳米自组装对大规模复杂环境中NOM和污染物的存在及归宿有着深远影响。机器学习(ML)为解释和预测NOM自组装的过程、结构及环境效应提供了一种很有前景且强大的工具。本综述旨在针对基于大数据的ML,提供一份类似教程的关于数据源确定、算法选择、模型构建、可解释性分析、应用及挑战的汇编,旨在阐明环境中NOM的自组装机制。先进的纳米-亚微米级空间化学分析技术的结果被建议作为输入数据,这些数据提供了分子相互作用和结构可视化的综合信息。现有的ML算法需要处理多尺度和多模态数据,这就需要开发新的算法框架。可解释的监督模型至关重要,因为它们具有很强的量化结构-性质-效应关系的能力,并能弥合简单的数据驱动ML与复杂的NOM组装实践之间的差距。然后,讨论并强调了采用ML来理解污染物的地球化学行为和生物有效性以及由NOM自组装模式导致的环境中元素循环过程的必要性和挑战。最后,提出了一个整合ML、实验和理论模拟的研究框架,以全面、高效地理解与NOM自组装相关的环境问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验