Suppr超能文献

通过动力学控制相分离制备的可调谐双连续大孔细胞培养支架

Tunable Bicontinuous Macroporous Cell Culture Scaffolds via Kinetically Controlled Phase Separation.

作者信息

Dudaryeva Oksana Y, Cousin Lucien, Krajnovic Leila, Gröbli Gian, Sapkota Virbin, Ritter Lauritz, Deshmukh Dhananjay, Cui Yifan, Style Robert W, Levato Riccardo, Labouesse Céline, Tibbitt Mark W

机构信息

Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland.

Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3584, Netherlands.

出版信息

Adv Mater. 2025 Feb;37(7):e2410452. doi: 10.1002/adma.202410452. Epub 2025 Jan 2.

Abstract

3D scaffolds enable biological investigations with a more natural cell conformation. However, the porosity of synthetic hydrogels is often limited to the nanometer scale, which confines the movement of 3D encapsulated cells and restricts dynamic cell processes. Precise control of hydrogel porosity across length scales remains a challenge and the development of porous materials that allow cell infiltration, spreading, and migration in a manner more similar to natural ECM environments is desirable. Here, a straightforward and reliable method is presented for generating kinetically-controlled macroporous biomaterials using liquid-liquid phase separation between poly(ethylene glycol) (PEG) and dextran. Photopolymerization-induced phase separation resulted in macroporous hydrogels with tunable pore size. Varying light intensity and hydrogel composition controlled polymerization kinetics, time to percolation, and complete gelation, which defined the average pore diameter (Ø = 1-200 µm) and final gel stiffness of the formed hydrogels. Critically, for biological applications, macroporous hydrogels are prepared from aqueous polymer solutions at physiological pH and temperature using visible light, allowing for direct cell encapsulation. Human dermal fibroblasts in a range of macroporous gels are encapsulated with different pore sizes. Porosity improved cell spreading with respect to bulk gels and allowed migration in the porous biomaterials.

摘要

3D支架能够以更自然的细胞构象进行生物学研究。然而,合成水凝胶的孔隙率通常限制在纳米尺度,这限制了三维封装细胞的运动并阻碍了动态细胞过程。在不同长度尺度上精确控制水凝胶孔隙率仍然是一个挑战,因此需要开发一种多孔材料,使其能以更类似于天然细胞外基质环境的方式实现细胞浸润、铺展和迁移。在此,我们提出了一种简单可靠的方法,利用聚乙二醇(PEG)和葡聚糖之间的液-液相分离来制备动力学可控的大孔生物材料。光聚合诱导相分离产生了孔径可调的大孔水凝胶。改变光强度和水凝胶组成可控制聚合动力学、渗透时间和完全凝胶化,这决定了所形成水凝胶的平均孔径(Ø = 1-200 µm)和最终凝胶刚度。至关重要的是,对于生物应用,大孔水凝胶是在生理pH值和温度下,使用可见光从水性聚合物溶液中制备的,从而可以直接进行细胞封装。将人真皮成纤维细胞封装在一系列具有不同孔径的大孔凝胶中。相对于块状凝胶,孔隙率改善了细胞铺展,并使细胞能够在多孔生物材料中迁移。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd03/11837887/18dc349ef2a2/ADMA-37-2410452-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验