Castanheira Sónia, Torronteras Sara, Cestero Juan J, García-Del Portillo Francisco
Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.
Infect Immun. 2025 Feb 18;93(2):e0055524. doi: 10.1128/iai.00555-24. Epub 2024 Dec 31.
Type III protein secretion systems (T3SSs) function as multiprotein devices that span the envelope of Gram-negative bacteria using the peptidoglycan (PG) layer as scaffold. This spatial arrangement explains why modifications in PG structure can alter T3SS activity. In incorporation of non-canonical D-amino acids in the PG was shown to decrease the activity of the T3SS encoded by the pathogenicity island-1 (SPI-1) without affecting other T3SS, like the flagellum apparatus. Enigmatically, following invasion of host cell serovar Typhimurium modifies PG synthesis by upregulating two pathogen-specific enzymes, the penicillin-binding proteins PBP2 and PBP3, with roles in cell elongation and division, respectively. In the mouse typhoid model, the amount of PBP2 and PBP3 produced by the pathogen exceeds by large those of the canonical enzymes PBP2 and PBP3. This change responds to acidity and high osmolarity, the same cues that intra-phagosomal . Typhimurium perceives to switch the SPI-1 T3SS by that encoded in SPI-2. Using isogenic mutants lacking each of the four morphogenetic PBPs, we tested whether their activities and those of the T3SS encoded by SPI-1 and SPI-2, are interconnected. Our data show that PBP2 is required for proper function of SPI-1 T3SS but dispensable for motility, whereas the lack of any of the morphogenetic PBPs increases SPI-2 T3SS activity. The positive control exerted by PBP2 on SPI-1 takes place via the SPI-1-specific regulators HilA and InvF. To our knowledge, these findings provide the first evidence linking morphogenetic enzymes that synthesize PG with T3SS associated to virulence.
III型蛋白分泌系统(T3SSs)作为多蛋白装置发挥作用,利用肽聚糖(PG)层作为支架跨越革兰氏阴性菌的包膜。这种空间排列解释了为什么PG结构的改变会改变T3SS的活性。研究表明,在PG中掺入非经典D-氨基酸会降低由致病岛-1(SPI-1)编码的T3SS的活性,而不会影响其他T3SS,如鞭毛装置。令人费解的是,在侵袭宿主细胞后,鼠伤寒血清型会通过上调两种病原体特异性酶——青霉素结合蛋白PBP2和PBP3来改变PG合成,这两种酶分别在细胞伸长和分裂中起作用。在小鼠伤寒模型中,病原体产生的PBP2和PBP3的量大大超过了经典酶PBP2和PBP3。这种变化对酸度和高渗透压有反应,这与鼠伤寒在吞噬体内感知到的信号相同,从而促使其从SPI-1 T3SS切换为SPI-2编码的T3SS。我们使用缺乏四种形态发生PBP中每一种的同基因突变体,测试了它们的活性以及由SPI-1和SPI-2编码的T3SS的活性是否相互关联。我们的数据表明,PBP2是SPI-1 T3SS正常功能所必需的,但对运动性是可有可无的,而缺乏任何一种形态发生PBP都会增加SPI-2 T3SS的活性。PBP2对SPI-1的正向调控是通过SPI-1特异性调节因子HilA和InvF实现的。据我们所知,这些发现提供了第一个证据,将合成PG的形态发生酶与与毒力相关的T3SS联系起来。