Mallis Robert J, Brazin Kristine N, Duke-Cohan Jonathan S, Akitsu Aoi, Stephens Hanna M, Chang-Gonzalez Ana C, Masi Daniel J, Kirkpatrick Evan H, Holliday Elizabeth L, Feng Yinnian, Zienkiewicz Katarzyna J, Lee Jonathan J, Cinella Vincenzo, Uberoy Kaveri I, Tan Kemin, Wagner Gerhard, Arthanari Haribabu, Hwang Wonmuk, Lang Matthew J, Reinherz Ellis L
Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
Immunol Rev. 2025 Jan;329(1):e13432. doi: 10.1111/imr.13432. Epub 2024 Dec 29.
αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination. Under load, the αβTCR undergoes reversible structural transitions involving partial unfolding of its clonotypic immunoglobulin-like (Ig) domains and coupled rearrangements of associated CD3 subunits and structural elements. We postulate that transitions provide critical energy to initiate the signaling cascade via induction of αβTCR quaternary structural rearrangements, associated membrane perturbations, exposure of CD3 ITAMs to phosphorylation by non-receptor tyrosine kinases, and phase separation of signaling molecules. Understanding force-mediated signaling by the αβTCR clarifies long-standing questions regarding αβTCR antigen recognition, specificity and affinity, providing a basis for continued investigation. Future directions include examining atomistic mechanisms of αβTCR signal initiation, performance quality, tissue compliance adaptability, and T-cell memory fate. The mechanotransduction paradigm will foster improved rational design of T-cell based vaccines, CAR-Ts, and adoptive therapies.
αβT细胞保护脊椎动物抵御多种疾病,通过利用机械力优化监测,以区分病理生理细胞改变和正常自身成分。多亚基αβT细胞受体(TCR)在热平衡之外发挥作用,通过T细胞运动和肌动蛋白-肌球蛋白机制产生的物理力获取能量。当抗原呈递细胞上的肽结合主要组织相容性复合体分子(pMHC)被连接时,T细胞上的αβTCR利用力形成捕获键,延长键的寿命,并增强抗原识别。在负载下,αβTCR经历可逆的结构转变,涉及其克隆型免疫球蛋白样(Ig)结构域的部分展开以及相关CD3亚基和结构元件的偶联重排。我们推测,这些转变通过诱导αβTCR四级结构重排、相关的膜扰动、CD3免疫受体酪氨酸激活基序(ITAM)暴露于非受体酪氨酸激酶的磷酸化以及信号分子的相分离,为启动信号级联提供关键能量。理解αβTCR的力介导信号传导,澄清了有关αβTCR抗原识别、特异性和亲和力的长期问题,为持续研究提供了基础。未来的方向包括研究αβTCR信号起始的原子机制、性能质量、组织顺应性适应性和T细胞记忆命运。机械转导范式将促进基于T细胞的疫苗、嵌合抗原受体T细胞(CAR-T)和过继性疗法的改进合理设计。