Afzal Zainab, Krumlauf Robb
Stowers Institute for Medical Research, Kansas City, MO, USA.
Anatomy and Cell Biology Department, Kansas University Medical Center, Kansas City, KS, USA.
Methods Mol Biol. 2025;2889:53-66. doi: 10.1007/978-1-0716-4322-8_5.
Understanding the spatial and temporal dynamics of gene expression is crucial for unraveling molecular mechanisms underlying various biological processes. While traditional methods have offered insights into gene expression patterns, they primarily focus on mature mRNA transcripts, lacking real-time visualization of newly synthesized or nascent transcription events. Recent advancements in monitoring nascent transcription in live cells provide valuable insights into transcriptional dynamics. However, such approaches are limited in mammalian embryos. Addressing this gap, we optimized a single molecule fluorescent in situ hybridization (smFISH) technique and coupled it with deep learning algorithms to automate detection of nascent transcription in mouse embryonic tissue samples. Our method enables precise quantification and comparison of nascent transcripts within tissue sections, offering reproducible results and potential applications in studying gene expression dynamics across various developmental stages.
了解基因表达的时空动态对于揭示各种生物学过程背后的分子机制至关重要。虽然传统方法为基因表达模式提供了见解,但它们主要关注成熟的mRNA转录本,缺乏对新合成或新生转录事件的实时可视化。监测活细胞中新生转录的最新进展为转录动态提供了有价值的见解。然而,这些方法在哺乳动物胚胎中受到限制。为了填补这一空白,我们优化了单分子荧光原位杂交(smFISH)技术,并将其与深度学习算法相结合,以自动检测小鼠胚胎组织样本中的新生转录。我们的方法能够对组织切片中的新生转录本进行精确量化和比较,提供可重复的结果,并在研究不同发育阶段的基因表达动态方面具有潜在应用。