Suppr超能文献

通过整合不确定性和风险因素评估进行事件持续时间预测:旧金山事件案例研究

Incident duration prediction through integration of uncertainty and risk factor evaluation: A San Francisco incidents case study.

作者信息

Salehi Amirreza, Babaei Ardavan, Khedmati Majid

机构信息

Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran.

Faculty of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran.

出版信息

PLoS One. 2025 Jan 2;20(1):e0316289. doi: 10.1371/journal.pone.0316289. eCollection 2025.

Abstract

Predicting incident duration and understanding incident types are essential in traffic management for resource optimization and disruption minimization. Precise predictions enable the efficient deployment of response teams and strategic traffic rerouting, leading to reduced congestion and enhanced safety. Furthermore, an in-depth understanding of incident types helps in implementing preventive measures and formulating strategies to alleviate their influence on road networks. In this paper, we present a comprehensive framework for accurately predicting incident duration, with a particular emphasis on the critical role of street conditions and locations as major incident triggers. To demonstrate the effectiveness of our framework, we performed an in-depth case study using a dataset from San Francisco. We introduce a novel feature called "Risk" derived from the Risk Priority Number (RPN) concept, highlighting the significance of the incident location in both incident occurrence and prediction. Additionally, we propose a refined incident categorization through fuzzy clustering methods, delineating a unique policy for identifying boundary clusters that necessitate further modeling and testing under varying scenarios. Each cluster undergoes a Multiple Criteria Decision-Making (MCDM) process to gain deeper insights into their distinctions and provide valuable managerial insights. Finally, we employ both traditional Machine Learning (ML) and Deep Learning (DL) models to perform classification and regression tasks. Specifically, incidents residing in boundary clusters are predicted utilizing the scenarios outlined in this study. Through a rigorous analysis of feature importance using top-performing predictive models, we identify the "Risk" factor as a critical determinant of incident duration. Moreover, variables such as distance, humidity, and hour demonstrate significant influence, further enhancing the predictive power of the proposed model.

摘要

预测事件持续时间并了解事件类型对于交通管理中的资源优化和干扰最小化至关重要。精确的预测能够有效部署应急响应团队并进行战略性交通改道,从而减少拥堵并提高安全性。此外,深入了解事件类型有助于实施预防措施并制定策略以减轻其对道路网络的影响。在本文中,我们提出了一个全面的框架来准确预测事件持续时间,特别强调街道条件和位置作为主要事件触发因素的关键作用。为了证明我们框架的有效性,我们使用来自旧金山的数据集进行了深入的案例研究。我们引入了一个从风险优先数(RPN)概念衍生而来的名为“风险”的新特征,突出了事件位置在事件发生和预测中的重要性。此外,我们通过模糊聚类方法提出了一种细化的事件分类,划定了一个独特的策略来识别在不同场景下需要进一步建模和测试的边界聚类。每个聚类都经过多准则决策(MCDM)过程,以更深入地了解它们的差异并提供有价值的管理见解。最后,我们使用传统机器学习(ML)和深度学习(DL)模型来执行分类和回归任务。具体而言,利用本研究中概述的场景来预测位于边界聚类中的事件。通过使用表现最佳的预测模型对特征重要性进行严格分析,我们确定“风险”因素是事件持续时间的关键决定因素。此外,距离、湿度和时间等变量显示出显著影响,进一步增强了所提出模型的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ec/11694969/368038e8c08a/pone.0316289.g001.jpg

相似文献

1
Incident duration prediction through integration of uncertainty and risk factor evaluation: A San Francisco incidents case study.
PLoS One. 2025 Jan 2;20(1):e0316289. doi: 10.1371/journal.pone.0316289. eCollection 2025.
2
Real-time prediction and avoidance of secondary crashes under unexpected traffic congestion.
Accid Anal Prev. 2018 Mar;112:39-49. doi: 10.1016/j.aap.2017.11.025. Epub 2018 Jan 5.
3
Uncertainty-aware probabilistic graph neural networks for road-level traffic crash prediction.
Accid Anal Prev. 2024 Dec;208:107801. doi: 10.1016/j.aap.2024.107801. Epub 2024 Oct 2.
4
Hazard based models for freeway traffic incident duration.
Accid Anal Prev. 2013 Mar;52:171-81. doi: 10.1016/j.aap.2012.12.037. Epub 2013 Jan 16.
6
Incident duration modeling using flexible parametric hazard-based models.
Comput Intell Neurosci. 2014;2014:723427. doi: 10.1155/2014/723427. Epub 2014 Nov 4.
8
Estimation of incident clearance times using Bayesian Networks approach.
Accid Anal Prev. 2006 May;38(3):542-55. doi: 10.1016/j.aap.2005.11.012. Epub 2006 Jan 19.
9
A deep transfer learning approach for Real-Time traffic conflict prediction with trajectory data.
Accid Anal Prev. 2025 May;214:107966. doi: 10.1016/j.aap.2025.107966. Epub 2025 Feb 17.
10
Competing risks mixture model for traffic incident duration prediction.
Accid Anal Prev. 2015 Feb;75:192-201. doi: 10.1016/j.aap.2014.11.023. Epub 2014 Dec 6.

本文引用的文献

1
Exploring weather-related factors affecting the delay caused by traffic incidents: Mitigating the negative effect of traffic incidents.
Sci Total Environ. 2023 Jun 15;877:162938. doi: 10.1016/j.scitotenv.2023.162938. Epub 2023 Mar 17.
2
Improvement of sample discrimination using laser-induced breakdown spectroscopy with multiple-setting spectra.
Anal Chim Acta. 2021 Nov 1;1184:339053. doi: 10.1016/j.aca.2021.339053. Epub 2021 Sep 11.
3
4
Risk analysis of traffic accidents' severities: An application of three data mining models.
ISA Trans. 2020 Nov;106:213-220. doi: 10.1016/j.isatra.2020.06.018. Epub 2020 Jun 24.
5
Competing risks mixture model for traffic incident duration prediction.
Accid Anal Prev. 2015 Feb;75:192-201. doi: 10.1016/j.aap.2014.11.023. Epub 2014 Dec 6.
6
Spatial analysis of highway incident durations in the context of Hurricane Sandy.
Accid Anal Prev. 2015 Jan;74:77-86. doi: 10.1016/j.aap.2014.10.015. Epub 2014 Oct 28.
7
Hazard based models for freeway traffic incident duration.
Accid Anal Prev. 2013 Mar;52:171-81. doi: 10.1016/j.aap.2012.12.037. Epub 2013 Jan 16.
8
A cluster separation measure.
IEEE Trans Pattern Anal Mach Intell. 1979 Feb;1(2):224-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验