Suppr超能文献

用于训练以对超声图像进行波束形成的深度神经网络的过拟合检测方法。

Overfit detection method for deep neural networks trained to beamform ultrasound images.

作者信息

Zhang Jiaxin, Bell Muyinatu A Lediju

机构信息

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Ultrasonics. 2025 Apr;148:107562. doi: 10.1016/j.ultras.2024.107562. Epub 2024 Dec 27.

Abstract

Deep neural networks (DNNs) have remarkable potential to reconstruct ultrasound images. However, this promise can suffer from overfitting to training data, which is typically detected via loss function monitoring during an otherwise time-consuming training process or via access to new sources of test data. We present a method to detect overfitting with associated evaluation approaches that only require knowledge of a network architecture and associated trained weights. Three types of artificial DNN inputs (i.e., zeros, ones, and Gaussian noise), unseen during DNN training, were input to three DNNs designed for ultrasound image formation, trained on multi-site data, and submitted to the Challenge on Ultrasound Beamforming with Deep Learning (CUBDL). Overfitting was detected using these artificial DNN inputs. Qualitative and quantitative comparisons of DNN-created images to ground truth images immediately revealed signs of overfitting (e.g., zeros input produced mean output values ≥0.08, ones input produced mean output values ≤0.07, with corresponding image-to-image normalized correlations ≤0.8). The proposed approach is promising to detect overfitting without requiring lengthy network retraining or the curation of additional test data. Potential applications include sanity checks during federated learning, as well as optimization, security, public policy, regulation creation, and benchmarking.

摘要

深度神经网络(DNN)在重建超声图像方面具有显著潜力。然而,这一前景可能会受到对训练数据过度拟合的影响,通常需要在耗时的训练过程中通过损失函数监测或通过获取新的测试数据源来检测。我们提出了一种方法,通过相关的评估方法来检测过度拟合,这些方法只需要了解网络架构和相关的训练权重。三种在DNN训练期间未见过的人工DNN输入(即零、一和高斯噪声)被输入到三个为超声图像形成设计的DNN中,这些DNN在多站点数据上进行训练,并提交给深度学习超声波束形成挑战赛(CUBDL)。使用这些人工DNN输入来检测过度拟合。将DNN创建的图像与真实图像进行定性和定量比较,立即揭示了过度拟合的迹象(例如,零输入产生的平均输出值≥0.08,一输入产生的平均输出值≤0.07,相应的图像间归一化相关性≤0.8)。所提出的方法有望在不需要长时间网络重新训练或策划额外测试数据的情况下检测过度拟合。潜在应用包括联邦学习期间的合理性检查,以及优化、安全、公共政策、法规制定和基准测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf83/11839378/5bb08ed2cff6/nihms-2045399-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验