Suppr超能文献

在接触腐蚀性化学物质(次氯酸钠)后用缓冲维生素C冲洗可减轻眼部损伤深度。

Washing with buffered vitamin C after corrosive chemical (sodium hypochlorite) exposure reduces ocular depth of injury.

作者信息

Lebrun Stewart, Nguyen Linda, Romero Joana, Chan Roxanne

机构信息

Lebrun Labs LLC, Anaheim, CA, United States.

Lebrun Labs LLC, Anaheim, CA, United States.

出版信息

Toxicol In Vitro. 2025 Apr;104:106006. doi: 10.1016/j.tiv.2024.106006. Epub 2024 Dec 31.

Abstract

Chemical eye injuries occur in home, industrial, and military settings. The standard recommended treatment after exposure of the eyes to chemical toxins is washing with tap water for at least 15 min. An estimated 80 % of ocular toxins are associated with reactive oxygen species and/or extreme pH. Using food-source eyes and a commercially available test kit for depth of injury (IVD EIT) that measures the depth of dead corneal keratocytes by fragmented DNA staining, washing the eye with a buffered vitamin C solution significantly reduced corneal keratocyte cell death and depth of injury compared to control. When eyes were washed (using a 500-mL eyewash bottle) for 15 min with water after exposure to 32 % sodium hypochlorite (chlorine bleach), the depth of injury was 59.6 ± 3.6 %, a level of damage predicted to cause extreme/permanent eye injury or even blindness in vivo (extreme or irreversible injury, GHS category 1), but washing with 0.2 % buffered vitamin C after bleach exposure reduced damage to13.8 ± 1.4 %, which is significantly less (P < 0.001) and predicted by the IVD EIT method to be reversible irritation (GHS category 2) that will heal within 21 days in vivo.

摘要

化学性眼外伤发生于家庭、工业和军事环境中。眼睛接触化学毒素后的标准推荐治疗方法是用自来水冲洗至少15分钟。估计80%的眼部毒素与活性氧和/或极端pH值有关。使用食物来源的眼睛和一种市售的损伤深度检测试剂盒(IVD EIT),该试剂盒通过破碎DNA染色来测量死亡角膜角质形成细胞的深度,与对照组相比,用缓冲维生素C溶液冲洗眼睛可显著减少角膜角质形成细胞死亡和损伤深度。当眼睛在接触32%次氯酸钠(含氯漂白剂)后用水(使用500毫升洗眼瓶)冲洗15分钟时,损伤深度为59.6±3.6%,这种损伤程度预计会在体内导致极端/永久性眼损伤甚至失明(极端或不可逆损伤,全球统一制度类别1),但在漂白剂暴露后用0.2%缓冲维生素C冲洗可将损伤降低至13.8±1.4%,这显著更低(P<0.001),并且根据IVD EIT方法预测为可逆性刺激(全球统一制度类别2),在体内21天内可愈合。

相似文献

1
Washing with buffered vitamin C after corrosive chemical (sodium hypochlorite) exposure reduces ocular depth of injury.
Toxicol In Vitro. 2025 Apr;104:106006. doi: 10.1016/j.tiv.2024.106006. Epub 2024 Dec 31.
2
The clinical toxicology of sodium hypochlorite.
Clin Toxicol (Phila). 2019 May;57(5):303-311. doi: 10.1080/15563650.2018.1543889. Epub 2019 Jan 28.
4
Pathology of ocular irritation with bleaching agents in the rabbit low-volume eye test.
Toxicol Pathol. 2001 May-Jun;29(3):308-19. doi: 10.1080/019262301316905264.
5
An in vitro depth of injury prediction model for a histopathologic classification of EPA and GHS eye irritants.
Toxicol In Vitro. 2019 Dec;61:104628. doi: 10.1016/j.tiv.2019.104628. Epub 2019 Aug 13.
7
Quantitative characterization of acid- and alkali-induced corneal injury in the low-volume eye test.
Toxicol Pathol. 2000 Sep-Oct;28(5):668-78. doi: 10.1177/019262330002800506.
9
Development of gelatin/ascorbic acid cryogels for potential use in corneal stromal tissue engineering.
Acta Biomater. 2018 Jan;65:123-136. doi: 10.1016/j.actbio.2017.11.018. Epub 2017 Nov 8.
10
Irrigation with phosphate-buffered saline causes corneal calcification during treatment of ocular burns.
Burns. 2019 Dec;45(8):1871-1879. doi: 10.1016/j.burns.2019.04.022. Epub 2019 Oct 16.

本文引用的文献

1
Further optimisation of a macromolecular ocular irritation test (OptiSafe).
Cutan Ocul Toxicol. 2023 Mar;42(1):38-48. doi: 10.1080/15569527.2023.2170067. Epub 2023 Jan 28.
2
Expansion of the application domain of a macromolecular ocular irritation test (OptiSafe™).
Toxicol In Vitro. 2023 Feb;86:105515. doi: 10.1016/j.tiv.2022.105515. Epub 2022 Nov 6.
3
Amniotic membrane transplantation for acute ocular burns.
Cochrane Database Syst Rev. 2022 Sep 1;9(9):CD009379. doi: 10.1002/14651858.CD009379.pub3.
4
Corneal stromal repair and regeneration.
Prog Retin Eye Res. 2022 Nov;91:101090. doi: 10.1016/j.preteyeres.2022.101090. Epub 2022 May 29.
5
Comprehensive spectral libraries for various rabbit eye tissue proteomes.
Sci Data. 2022 Mar 29;9(1):111. doi: 10.1038/s41597-022-01241-5.
7
Evaluation of a novel combination of TRAM-34 and ascorbic acid for the treatment of corneal fibrosis in vivo.
PLoS One. 2022 Jan 10;17(1):e0262046. doi: 10.1371/journal.pone.0262046. eCollection 2022.
8
Modeling the antioxidant properties of the eye reduces the false-positive rate of a nonanimal eye irritation test (OptiSafe).
Toxicol In Vitro. 2021 Oct;76:105208. doi: 10.1016/j.tiv.2021.105208. Epub 2021 Jun 30.
10
A Novel Topical Ophthalmic Formulation to Mitigate Acute Mustard Gas Keratopathy In Vivo: A Pilot Study.
Transl Vis Sci Technol. 2020 Nov 2;9(12):6. doi: 10.1167/tvst.9.12.6. eCollection 2020 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验