Yang Zhichao, Yin Yuyang, Liang Mengyuan, Fu Wanyi, Zhang Jiahe, Liu Fangzhou, Zhang Wen, Pan Bingcai
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China.
Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, PR China.
Nat Commun. 2025 Jan 2;16(1):146. doi: 10.1038/s41467-024-55625-9.
The unique properties of nanomaterials offer vast opportunities to advance sustainable processes. Incidental nanoparticles (INPs) represent a significant part of nanomaterials, yet their potential for sustainable applications remains largely untapped. Herein, we developed a simple strategy to harness INPs to upgrade the waste-to-resource paradigm, significantly reducing the energy consumption and greenhouse gas emissions. Using the recycling of fly ash from municipal solid waste incineration (MSWI) as a proof of concept, we reveal that incidental iron oxide nanoclusters confined inside the residual carbon trigger Fenton-like catalysis by contacting HO at circumneutral pH (5.0-7.0). This approach efficiently detoxifies the adsorbed dioxins under ambient conditions, which otherwise relies on energy-intensive thermal methods in the developed recovery paradigms. Collective evidence underlines that the uniform distribution of iron oxide nanoclusters within dioxin-enriched nanopores enhances the collision between the generated active oxidants and dioxins, resulting in a substantially higher detoxification efficiency than the Fe(II)-induced bulk Fenton reaction. Efficient and cost-effective detoxification of MSWI fly ash at 278‒288 K at pilot scale, combined with the satisfactory removal of adsorbed chemicals in other solid wastes unlocks the great potential of incidental nanoparticles in upgrading the process of solid waste utilization and other sustainable applications.
纳米材料的独特性质为推进可持续发展进程提供了广阔机遇。偶发纳米颗粒(INPs)是纳米材料的重要组成部分,但其在可持续应用方面的潜力仍 largely 未被挖掘。在此,我们开发了一种简单策略,利用 INPs 升级废物到资源的模式,显著降低能源消耗和温室气体排放。以城市固体废物焚烧(MSWI)产生的飞灰回收作为概念验证,我们发现残碳中包裹的偶发氧化铁纳米团簇在环境中性 pH(5.0 - 7.0)下与 HO 接触时会引发类芬顿催化反应。这种方法能在环境条件下有效去除吸附的二噁英,而在现有的回收模式中,这通常依赖于能源密集型的热方法。综合证据表明,富含二噁英的纳米孔内氧化铁纳米团簇的均匀分布增强了生成的活性氧化剂与二噁英之间的碰撞,导致解毒效率比 Fe(II) 诱导的均相芬顿反应高得多。在中试规模下于 278 - 288 K 对 MSWI 飞灰进行高效且经济高效的解毒处理,以及在其他固体废物中对吸附化学物质的满意去除,释放了偶发纳米颗粒在升级固体废物利用过程及其他可持续应用方面的巨大潜力。