Suppr超能文献

用于在潮湿环境空气中加工硫化物固体电解质的表面分子工程。

Surface molecular engineering to enable processing of sulfide solid electrolytes in humid ambient air.

作者信息

Liu Mengchen, Hong Jessica J, Sebti Elias, Zhou Ke, Wang Shen, Feng Shijie, Pennebaker Tyler, Hui Zeyu, Miao Qiushi, Lu Ershuang, Harpak Nimrod, Yu Sicen, Zhou Jianbin, Oh Jeong Woo, Song Min-Sang, Luo Jian, Clément Raphaële J, Liu Ping

机构信息

Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, USA.

Materials Department, University of California Santa Barbara, Santa Barbara, USA.

出版信息

Nat Commun. 2025 Jan 2;16(1):213. doi: 10.1038/s41467-024-55634-8.

Abstract

Sulfide solid-state electrolytes (SSEs) are promising candidates to realize all solid-state batteries (ASSBs) due to their superior ionic conductivity and excellent ductility. However, their hypersensitivity to moisture requires processing environments that are not compatible with today's lithium-ion battery manufacturing infrastructure. Herein, we present a reversible surface modification strategy that enables the processability of sulfide SSEs (e. g., LiPSCl) under humid ambient air. We demonstrate that a long chain alkyl thiol, 1-undecanethiol, is chemically compatible with the electrolyte with negligible impact on its ion conductivity. Importantly, the thiol modification extends the amount of time that the sulfide SSE can be exposed to air with 33% relative humidity (33% RH) with limited degradation of its structure while retaining a conductivity of above 1 mS cm for up to 2 days, a more than 100-fold improvement in protection time over competing approaches. Experimental and computational results reveal that the thiol group anchors to the SSE surface, while the hydrophobic hydrocarbon tail provides protection by repelling water. The modified LiPSCl SSE maintains its function after exposure to ambient humidity when implemented in a LiIn | |LiNiCoMnO ASSB. The proposed protection strategy based on surface molecular interactions represents a major step forward towards cost-competitive and energy-efficient sulfide SSE manufacturing for ASSB applications.

摘要

硫化物固态电解质(SSEs)因其卓越的离子导电性和出色的延展性,有望成为实现全固态电池(ASSBs)的材料。然而,它们对水分高度敏感,这就需要与当今锂离子电池制造基础设施不兼容的加工环境。在此,我们提出一种可逆的表面改性策略,使硫化物SSEs(如LiPSCl)能够在潮湿的环境空气中进行加工。我们证明,长链烷基硫醇1-十一烷硫醇与电解质具有化学相容性,对其离子电导率的影响可忽略不计。重要的是,硫醇改性延长了硫化物SSE在33%相对湿度(33%RH)空气中的暴露时间,其结构降解有限,同时在长达2天的时间内保持高于1 mS cm的电导率,保护时间比其他竞争方法提高了100多倍。实验和计算结果表明,硫醇基团锚定在SSE表面,而疏水的烃链通过排斥水提供保护。当在LiIn ||LiNiCoMnO全固态电池中使用时,改性后的LiPSCl SSE在暴露于环境湿度后仍能保持其功能。所提出的基于表面分子相互作用的保护策略代表了在实现具有成本竞争力和能源效率的用于全固态电池应用的硫化物SSE制造方面向前迈出的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e38/11696013/5a82e8f27790/41467_2024_55634_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验