Li Weihan, Li Minsi, Wang Shuo, Chien Po-Hsiu, Luo Jing, Fu Jiamin, Lin Xiaoting, King Graham, Feng Renfei, Wang Jian, Zhou Jigang, Li Ruying, Liu Jue, Mo Yifei, Sham Tsun-Kong, Sun Xueliang
Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada.
Department of Chemistry and Soochow-Western Centre for Synchrotron Radiation Research, Western University, London, Ontario, Canada.
Nat Nanotechnol. 2025 Feb;20(2):265-275. doi: 10.1038/s41565-024-01813-z. Epub 2024 Nov 25.
The advancement of all-solid-state lithium metal batteries requires breakthroughs in solid-state electrolytes (SSEs) for the suppression of lithium dendrite growth at high current densities and high capacities (>3 mAh cm) and innovation of SSEs in terms of crystal structure, ionic conductivity and rigidness. Here we report a superionic conducting, highly lithium-compatible and air-stable vacancy-rich β-LiN SSE. This vacancy-rich β-LiN SSE shows a high ionic conductivity of 2.14 × 10 S cm at 25 °C and surpasses almost all the reported nitride-based SSEs. A Li- and N-vacancy-mediated fast lithium-ion migration mechanism is unravelled regarding vacancy-triggered reduced activation energy and increased mobile lithium-ion population. All-solid-state lithium symmetric cells using vacancy-rich β-LiN achieve breakthroughs in high critical current densities up to 45 mA cm and high capacities up to 7.5 mAh cm, and ultra-stable lithium stripping and plating processes over 2,000 cycles. The high lithium compatibility mechanism of vacancy-rich β-LiN is unveiled as intrinsic stability to lithium metal. In addition, β-LiN possesses excellent air stability through the formation of protection surfaces. All-solid-state lithium metal batteries using the vacancy-rich β-LiN as SSE interlayers and lithium cobalt oxide (LCO) and Ni-rich LiNiCoMnO (NCM83) cathodes exhibit excellent battery performance. Extremely stable cycling performance is demonstrated with high capacity retentions of 82.05% with 95.2 mAh g over 5,000 cycles at 1.0 C for LCO and 92.5% with 153.6 mAh g over 3,500 cycles at 1.0 C for NCM83. Utilizing the vacancy-rich β-LiN SSE and NCM83 cathodes, the all-solid-state lithium metal batteries successfully accomplished mild rapid charge and discharge rates up to 5.0 C, retaining 60.47% of the capacity. Notably, these batteries exhibited a high areal capacity, registering approximately 5.0 mAh cm for the compact pellet-type cells and around 2.2 mAh cm for the all-solid-state lithium metal pouch cells.
全固态锂金属电池的发展需要在固态电解质(SSE)方面取得突破,以抑制高电流密度和高容量(>3 mAh cm)下锂枝晶的生长,并在晶体结构、离子电导率和刚性方面对SSE进行创新。在此,我们报道了一种具有超离子传导性、高度锂兼容性和空气稳定性的富空位β-LiN SSE。这种富空位β-LiN SSE在25°C时显示出2.14×10 S cm的高离子电导率,超过了几乎所有已报道的氮化物基SSE。关于空位引发的活化能降低和可移动锂离子数量增加,揭示了一种由锂和氮空位介导的快速锂离子迁移机制。使用富空位β-LiN的全固态锂对称电池在高达45 mA cm的高临界电流密度和高达7.5 mAh cm的高容量方面取得了突破,并在超过2000次循环中实现了超稳定的锂剥离和电镀过程。富空位β-LiN的高锂兼容性机制被揭示为对锂金属的固有稳定性。此外,β-LiN通过形成保护表面具有优异的空气稳定性。使用富空位β-LiN作为SSE中间层以及锂钴氧化物(LCO)和富镍LiNiCoMnO(NCM83)阴极的全固态锂金属电池表现出优异的电池性能。对于LCO,在1.0 C下5000次循环中容量保持率为82.05%,容量为95.2 mAh g;对于NCM83,在1.0 C下3500次循环中容量保持率为92.5%,容量为153.6 mAh g,展示了极其稳定的循环性能。利用富空位β-LiN SSE和NCM83阴极,全固态锂金属电池成功实现了高达5.0 C的温和快速充放电速率,容量保持率为60.47%。值得注意的是,这些电池表现出高面积容量,紧凑型颗粒型电池约为5.0 mAh cm,全固态锂金属软包电池约为2.2 mAh cm。