Suppr超能文献

通过激光处理实现锂多硫化物固态电解质的空气稳定化。

Air Stabilization of LiPS Solid-State Electrolytes through Laser-Based Processing.

作者信息

Eatmon Yannick, Stiles Joseph W, Hayashi Shuichiro, Rupp Marco, Arnold Craig

机构信息

Department of Chemical and Biological Engineering, Princeton Univeristy, Princeton, NJ 08544, USA.

Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.

出版信息

Nanomaterials (Basel). 2023 Jul 29;13(15):2210. doi: 10.3390/nano13152210.

Abstract

All-solid-state batteries (ASSBs) that employ solid-state electrolytes (SSEs) have the potential to replace more conventional batteries that employ liquid electrolytes due to their inherent safety, compatibility with lithium metal and reputable ionic conductivity. LiPS is a promising SSE with reported ionic conductivities in the order of 10 mS/cm. However, its susceptibility to degradation through oxidation and hydrolysis limits its commercial viability. In this work, we demonstrate a laser-based processing method for SSEs to improve humidity stability. It was determined that laser power and scanning speed greatly affect surface morphology, as well as the resulting chemical composition of LiPS samples. Electrochemical impedance spectroscopy revealed that laser treatment can produce SSEs with higher ionic conductivities than pristine counterparts after air exposure. Further examination of chemical composition revealed an optimal laser processing condition that reduces the rate of P2S74- degradation. This work demonstrates the ability of laser-based processing to be used to improve the stability of SSEs.

摘要

采用固态电解质(SSEs)的全固态电池(ASSBs)因其固有的安全性、与锂金属的兼容性以及良好的离子导电性,有潜力取代更多采用液体电解质的传统电池。LiPS是一种很有前景的固态电解质,报道的离子电导率约为10 mS/cm。然而,其易通过氧化和水解而降解,这限制了其商业可行性。在这项工作中,我们展示了一种基于激光的固态电解质加工方法,以提高其湿度稳定性。已确定激光功率和扫描速度会极大地影响LiPS样品的表面形态以及最终的化学成分。电化学阻抗谱表明,激光处理可以使固态电解质在空气暴露后具有比原始样品更高的离子电导率。对化学成分的进一步研究揭示了一种最佳激光加工条件,该条件可降低P2S74-的降解速率。这项工作证明了基于激光的加工方法可用于提高固态电解质的稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb6/10421269/372f944601ce/nanomaterials-13-02210-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验