Strober Benjamin J, Zhang Martin Jinye, Amariuta Tiffany, Rossen Jordan, Price Alkes L
Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
Nat Genet. 2025 Jan;57(1):42-52. doi: 10.1038/s41588-024-01994-2. Epub 2025 Jan 2.
Complex diseases often have distinct mechanisms spanning multiple tissues. We propose tissue-gene fine-mapping (TGFM), which infers the posterior inclusion probability (PIP) for each gene-tissue pair to mediate a disease locus by analyzing summary statistics and expression quantitative trait loci (eQTL) data; TGFM also assigns PIPs to non-mediated variants. TGFM accounts for co-regulation across genes and tissues and models uncertainty in cis-predicted expression models, enabling correct calibration. We applied TGFM to 45 UK Biobank diseases or traits using eQTL data from 38 Genotype-Tissue Expression (GTEx) tissues. TGFM identified an average of 147 PIP > 0.5 causal genetic elements per disease or trait, of which 11% were gene-tissue pairs. Causal gene-tissue pairs identified by TGFM reflected both known biology (for example, TPO-thyroid for hypothyroidism) and biologically plausible findings (for example, SLC20A2-artery aorta for diastolic blood pressure). Application of TGFM to single-cell eQTL data from nine cell types in peripheral blood mononuclear cells (PBMCs), analyzed jointly with GTEx tissues, identified 30 additional causal gene-PBMC cell type pairs.
复杂疾病通常具有跨越多个组织的不同机制。我们提出了组织基因精细定位(TGFM)方法,该方法通过分析汇总统计数据和表达数量性状位点(eQTL)数据,推断每个基因 - 组织对介导疾病位点的后验包含概率(PIP);TGFM还将PIP分配给非介导变异。TGFM考虑了基因和组织间的共调控,并对顺式预测表达模型中的不确定性进行建模,从而实现正确校准。我们使用来自38个基因型 - 组织表达(GTEx)组织的eQTL数据,将TGFM应用于45种英国生物银行疾病或性状。TGFM为每种疾病或性状平均鉴定出147个PIP > 0.5的因果遗传元件,其中11%是基因 - 组织对。TGFM鉴定出的因果基因 - 组织对既反映了已知生物学现象(例如,甲状腺过氧化物酶 - 甲状腺与甲状腺功能减退症),也反映了生物学上合理的发现(例如,溶质载体家族20成员2 - 主动脉与舒张压)。将TGFM应用于外周血单核细胞(PBMC)中9种细胞类型的单细胞eQTL数据,并与GTEx组织联合分析,鉴定出另外30个因果基因 - PBMC细胞类型对。
Nat Genet. 2025-1
medRxiv. 2024-6-17
Hum Mol Genet. 2022-3-21
Nat Rev Genet. 2025-7-28
Nat Genet. 2024-1
Front Immunol. 2023
Signal Transduct Target Ther. 2023-6-19
J R Stat Soc Series B Stat Methodol. 2020-12