文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在疾病相关位点精细定位因果组织和基因。

Fine-mapping causal tissues and genes at disease-associated loci.

作者信息

Strober Benjamin J, Zhang Martin Jinye, Amariuta Tiffany, Rossen Jordan, Price Alkes L

机构信息

Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

Nat Genet. 2025 Jan;57(1):42-52. doi: 10.1038/s41588-024-01994-2. Epub 2025 Jan 2.


DOI:10.1038/s41588-024-01994-2
PMID:39747598
Abstract

Complex diseases often have distinct mechanisms spanning multiple tissues. We propose tissue-gene fine-mapping (TGFM), which infers the posterior inclusion probability (PIP) for each gene-tissue pair to mediate a disease locus by analyzing summary statistics and expression quantitative trait loci (eQTL) data; TGFM also assigns PIPs to non-mediated variants. TGFM accounts for co-regulation across genes and tissues and models uncertainty in cis-predicted expression models, enabling correct calibration. We applied TGFM to 45 UK Biobank diseases or traits using eQTL data from 38 Genotype-Tissue Expression (GTEx) tissues. TGFM identified an average of 147 PIP > 0.5 causal genetic elements per disease or trait, of which 11% were gene-tissue pairs. Causal gene-tissue pairs identified by TGFM reflected both known biology (for example, TPO-thyroid for hypothyroidism) and biologically plausible findings (for example, SLC20A2-artery aorta for diastolic blood pressure). Application of TGFM to single-cell eQTL data from nine cell types in peripheral blood mononuclear cells (PBMCs), analyzed jointly with GTEx tissues, identified 30 additional causal gene-PBMC cell type pairs.

摘要

复杂疾病通常具有跨越多个组织的不同机制。我们提出了组织基因精细定位(TGFM)方法,该方法通过分析汇总统计数据和表达数量性状位点(eQTL)数据,推断每个基因 - 组织对介导疾病位点的后验包含概率(PIP);TGFM还将PIP分配给非介导变异。TGFM考虑了基因和组织间的共调控,并对顺式预测表达模型中的不确定性进行建模,从而实现正确校准。我们使用来自38个基因型 - 组织表达(GTEx)组织的eQTL数据,将TGFM应用于45种英国生物银行疾病或性状。TGFM为每种疾病或性状平均鉴定出147个PIP > 0.5的因果遗传元件,其中11%是基因 - 组织对。TGFM鉴定出的因果基因 - 组织对既反映了已知生物学现象(例如,甲状腺过氧化物酶 - 甲状腺与甲状腺功能减退症),也反映了生物学上合理的发现(例如,溶质载体家族20成员2 - 主动脉与舒张压)。将TGFM应用于外周血单核细胞(PBMC)中9种细胞类型的单细胞eQTL数据,并与GTEx组织联合分析,鉴定出另外30个因果基因 - PBMC细胞类型对。

相似文献

[1]
Fine-mapping causal tissues and genes at disease-associated loci.

Nat Genet. 2025-1

[2]
Fine-mapping causal tissues and genes at disease-associated loci.

medRxiv. 2024-6-17

[3]
Multi-omics analysis for identifying cell-type-specific and bulk-level druggable targets in Alzheimer's disease.

J Transl Med. 2025-7-13

[4]
Fine-mapping of Parkinson's disease susceptibility loci identifies putative causal variants.

Hum Mol Genet. 2022-3-21

[5]
Integration of functional genomics and statistical fine-mapping systematically characterizes adult-onset and childhood-onset asthma genetic associations.

Genome Med. 2025-4-10

[6]
Functional characterization of eQTLs and asthma risk loci with scATAC-seq across immune cell types and contexts.

Am J Hum Genet. 2025-2-6

[7]
Identification and Functional Assessment of Candidate Causal -Regulatory Variants Underlying Electrocardiographic QT Interval GWAS Loci.

Circ Genom Precis Med. 2025-6

[8]
Mapping chromatin interactions at melanoma susceptibility loci uncovers distant cis-regulatory gene targets.

Am J Hum Genet. 2025-5-16

[9]
Causal network inference of cis- and trans-gene regulation of expression quantitative trait loci across human tissues.

Genetics. 2025-6-4

[10]
Cis- and trans-eQTL TWASs of breast and ovarian cancer identify more than 100 susceptibility genes in the BCAC and OCAC consortia.

Am J Hum Genet. 2024-6-6

引用本文的文献

[1]
Towards improved fine-mapping of candidate causal variants.

Nat Rev Genet. 2025-7-28

[2]
Uncovering causal gene-tissue pairs and variants through a multivariate TWAS controlling for infinitesimal effects.

Nat Commun. 2025-7-2

[3]
A multivariable cis-Mendelian randomization method robust to weak instrument bias and horizontal pleiotropy bias.

Brief Bioinform. 2025-5-1

[4]
Uncovering causal gene-tissue pairs and variants: A multivariable TWAS method controlling for infinitesimal effects.

Res Sq. 2024-12-10

[5]
Uncovering causal gene-tissue pairs and variants: A multivariable TWAS method controlling for infinitesimal effects.

medRxiv. 2024-12-10

[6]
Inferring causal cell types of human diseases and risk variants from candidate regulatory elements.

medRxiv. 2024-5-18

[7]
GWAS-Informed data integration and non-coding CRISPRi screen illuminate genetic etiology of bone mineral density.

bioRxiv. 2024-12-29

本文引用的文献

[1]
Fine-mapping across diverse ancestries drives the discovery of putative causal variants underlying human complex traits and diseases.

Nat Genet. 2024-9

[2]
Adjusting for genetic confounders in transcriptome-wide association studies improves discovery of risk genes of complex traits.

Nat Genet. 2024-2

[3]
Conditional transcriptome-wide association study for fine-mapping candidate causal genes.

Nat Genet. 2024-2

[4]
Improving fine-mapping by modeling infinitesimal effects.

Nat Genet. 2024-1

[5]
Modeling tissue co-regulation estimates tissue-specific contributions to disease.

Nat Genet. 2023-9

[6]
Current understanding of CTLA-4: from mechanism to autoimmune diseases.

Front Immunol. 2023

[7]
Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases.

Nat Genet. 2023-8

[8]
T cells in health and disease.

Signal Transduct Target Ther. 2023-6-19

[9]
Ovol1/2 loss-induced epidermal defects elicit skin immune activation and alter global metabolism.

EMBO Rep. 2023-7-5

[10]
A simple new approach to variable selection in regression, with application to genetic fine mapping.

J R Stat Soc Series B Stat Methodol. 2020-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索