Suppr超能文献

在疾病相关位点精细定位因果组织和基因。

Fine-mapping causal tissues and genes at disease-associated loci.

作者信息

Strober Benjamin J, Zhang Martin Jinye, Amariuta Tiffany, Rossen Jordan, Price Alkes L

机构信息

Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

Nat Genet. 2025 Jan;57(1):42-52. doi: 10.1038/s41588-024-01994-2. Epub 2025 Jan 2.

Abstract

Complex diseases often have distinct mechanisms spanning multiple tissues. We propose tissue-gene fine-mapping (TGFM), which infers the posterior inclusion probability (PIP) for each gene-tissue pair to mediate a disease locus by analyzing summary statistics and expression quantitative trait loci (eQTL) data; TGFM also assigns PIPs to non-mediated variants. TGFM accounts for co-regulation across genes and tissues and models uncertainty in cis-predicted expression models, enabling correct calibration. We applied TGFM to 45 UK Biobank diseases or traits using eQTL data from 38 Genotype-Tissue Expression (GTEx) tissues. TGFM identified an average of 147 PIP > 0.5 causal genetic elements per disease or trait, of which 11% were gene-tissue pairs. Causal gene-tissue pairs identified by TGFM reflected both known biology (for example, TPO-thyroid for hypothyroidism) and biologically plausible findings (for example, SLC20A2-artery aorta for diastolic blood pressure). Application of TGFM to single-cell eQTL data from nine cell types in peripheral blood mononuclear cells (PBMCs), analyzed jointly with GTEx tissues, identified 30 additional causal gene-PBMC cell type pairs.

摘要

复杂疾病通常具有跨越多个组织的不同机制。我们提出了组织基因精细定位(TGFM)方法,该方法通过分析汇总统计数据和表达数量性状位点(eQTL)数据,推断每个基因 - 组织对介导疾病位点的后验包含概率(PIP);TGFM还将PIP分配给非介导变异。TGFM考虑了基因和组织间的共调控,并对顺式预测表达模型中的不确定性进行建模,从而实现正确校准。我们使用来自38个基因型 - 组织表达(GTEx)组织的eQTL数据,将TGFM应用于45种英国生物银行疾病或性状。TGFM为每种疾病或性状平均鉴定出147个PIP > 0.5的因果遗传元件,其中11%是基因 - 组织对。TGFM鉴定出的因果基因 - 组织对既反映了已知生物学现象(例如,甲状腺过氧化物酶 - 甲状腺与甲状腺功能减退症),也反映了生物学上合理的发现(例如,溶质载体家族20成员2 - 主动脉与舒张压)。将TGFM应用于外周血单核细胞(PBMC)中9种细胞类型的单细胞eQTL数据,并与GTEx组织联合分析,鉴定出另外30个因果基因 - PBMC细胞类型对。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验