Suppr超能文献

纳米级液体流之间的动量隧穿

Momentum tunnelling between nanoscale liquid flows.

作者信息

Coquinot Baptiste, Bui Anna T, Toquer Damien, Michaelides Angelos, Kavokine Nikita, Cox Stephen J, Bocquet Lydéric

机构信息

Laboratoire de Physique de l'Ecole Normale Supérieure, Paris, France.

Max Planck Institute for Polymer Research, Mainz, Germany.

出版信息

Nat Nanotechnol. 2025 Mar;20(3):397-403. doi: 10.1038/s41565-024-01842-8. Epub 2025 Jan 2.

Abstract

The world of nanoscales in fluidics is the frontier where the continuum of fluid mechanics meets the atomic, and even quantum, nature of matter. While water dynamics remains largely classical under extreme confinement, several experiments have recently reported coupling between water transport and the electronic degrees of freedom of the confining materials. This avenue prompts us to reconsider nanoscale hydrodynamic flows under the perspective of interacting excitations, akin to condensed matter frameworks. Here we show, using a combination of many-body theory and molecular simulations, that the flow of a liquid can induce the flow of another liquid behind a separating wall, at odds with the prediction of continuum hydrodynamics. We further show that the range of this 'flow tunnelling' can be tuned through the solid's electronic excitations, with a maximum occurring when these are at resonance with the liquid's charge density fluctuations. Flow tunnelling is expected to play a role in global transport across nanoscale fluidic networks, such as lamellar graphene oxide or MXene membranes. It further suggests exploiting the electronic properties of the confining walls for manipulating liquids via their dielectric spectra, beyond the nature and characteristics of individual molecules.

摘要

流体中的纳米尺度世界是流体力学的连续介质与物质的原子甚至量子性质相遇的前沿领域。虽然在极端受限的情况下,水动力学在很大程度上仍保持经典,但最近有几项实验报告了水传输与受限材料的电子自由度之间的耦合。这条途径促使我们从相互作用激发的角度重新审视纳米尺度的流体动力学流动,这类似于凝聚态物质框架。在这里,我们结合多体理论和分子模拟表明,一种液体的流动可以在分隔壁后诱导另一种液体的流动,这与连续介质流体动力学的预测相悖。我们进一步表明,这种“流动隧穿”的范围可以通过固体的电子激发来调节,当这些激发与液体的电荷密度波动共振时达到最大值。预计流动隧穿将在跨纳米尺度流体网络(如层状氧化石墨烯或MXene膜)的全局传输中发挥作用。这进一步表明,除了单个分子的性质和特征之外,还可以利用受限壁的电子特性通过其介电光谱来操纵液体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验