Suppr超能文献

利用分时光镊微流变学测量细胞器、细胞和生物体随年龄变化的粘弹性。

Measuring age-dependent viscoelasticity of organelles, cells and organisms with time-shared optical tweezer microrheology.

作者信息

Català-Castro Frederic, Ortiz-Vásquez Santiago, Martínez-Fernández Carmen, Pezzano Fabio, Garcia-Cabau Carla, Fernández-Campo Martín, Sanfeliu-Cerdán Neus, Jiménez-Delgado Senda, Salvatella Xavier, Ruprecht Verena, Frigeri Paolo-Antonio, Krieg Michael

机构信息

ICFO-Institut de Ciències Fotòniques, Castelldefels, The Barcelona Institute of Science and Technology, Barcelona, Spain.

Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.

出版信息

Nat Nanotechnol. 2025 Mar;20(3):411-420. doi: 10.1038/s41565-024-01830-y. Epub 2025 Jan 2.

Abstract

Quantifying the mechanical response of the biological milieu (such as the cell's interior) and complex fluids (such as biomolecular condensates) would enable a better understanding of cellular differentiation and aging and accelerate drug discovery. Here we present time-shared optical tweezer microrheology to determine the frequency- and age-dependent viscoelastic properties of biological materials. Our approach involves splitting a single laser beam into two near-instantaneous time-shared optical traps to carry out simultaneous force and displacement measurements and quantify the mechanical properties ranging from millipascals to kilopascals across five decades of frequency. To create a practical and robust nanorheometer, we leverage both numerical and analytical models to analyse typical deviations from the ideal behaviour and offer solutions to account for these discrepancies. We demonstrate the versatility of the technique by measuring the liquid-solid phase transitions of MEC-2 stomatin and CPEB4 biomolecular condensates, and quantify the complex viscoelastic properties of intracellular compartments of zebrafish progenitor cells. In Caenorhabditis elegans, we uncover how mutations in the nuclear envelope proteins LMN-1 lamin A, EMR-1 emerin and LEM-2 LEMD2, which cause premature aging disorders in humans, soften the cytosol of intestinal cells during organismal age. We demonstrate that time-shared optical tweezer microrheology offers the rapid phenotyping of material properties inside cells and protein blends, which can be used for biomedical and drug-screening applications.

摘要

量化生物环境(如细胞内部)和复杂流体(如生物分子凝聚物)的力学响应,将有助于更好地理解细胞分化和衰老,并加速药物发现。在此,我们展示了分时光镊微流变学,以确定生物材料的频率和年龄依赖性粘弹性。我们的方法包括将单束激光分成两个近乎瞬时的分时光阱,以同时进行力和位移测量,并量化跨越五个数量级频率范围从毫帕斯卡到千帕斯卡的力学性能。为了创建一个实用且强大的纳米流变仪,我们利用数值模型和解析模型来分析与理想行为的典型偏差,并提供解决这些差异的方案。我们通过测量MEC-2 stomatin和CPEB4生物分子凝聚物的液-固相变,展示了该技术的多功能性,并量化了斑马鱼祖细胞内细胞区室的复杂粘弹性。在秀丽隐杆线虫中,我们发现导致人类早衰疾病的核膜蛋白LMN-1核纤层蛋白A、EMR-1 emerin和LEM-2 LEMD2的突变如何在生物体衰老过程中使肠道细胞的细胞质变软。我们证明分时光镊微流变学能够对细胞内和蛋白质混合物中的材料特性进行快速表型分析,可用于生物医学和药物筛选应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff69/11919717/e6cae2005107/41565_2024_1830_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验