Suppr超能文献

脑模型神经相似性揭示抽象概括性能。

Brain-model neural similarity reveals abstractive summarization performance.

作者信息

Zhang Zhejun, Guo Shaoting, Zhou Wenqing, Luo Yingying, Zhu Yingqi, Zhang Lin, Li Lei

机构信息

School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China.

Beijing Big Data Center, Beijing, 100101, China.

出版信息

Sci Rep. 2025 Jan 2;15(1):370. doi: 10.1038/s41598-024-84530-w.

Abstract

Deep language models (DLMs) have exhibited remarkable language understanding and generation capabilities, prompting researchers to explore the similarities between their internal mechanisms and human language cognitive processing. This study investigated the representational similarity (RS) between the abstractive summarization (ABS) models and the human brain and its correlation to the performance of ABS tasks. Specifically, representational similarity analysis (RSA) was used to measure the similarity between the representational patterns (RPs) of the BART, PEGASUS, and T5 models' hidden layers and the human brain's language RPs under different spatiotemporal conditions. Layer-wise ablation manipulation, including attention ablation and noise addition was employed to examine the hidden layers' effect on model performance. The results demonstrate that as the depth of hidden layers increases, the models' text encoding becomes increasingly similar to the human brain's language RPs. Manipulating deeper layers leads to more substantial decline in summarization performance compared to shallower layers, highlighting the crucial role of deeper layers in integrating essential information. Notably, the study confirms the hypothesis that the hidden layers exhibiting higher similarity to human brain activity play a more critical role in model performance, with their correlations reaching statistical significance even after controlling for perplexity. These findings deepen our understanding of the cognitive mechanisms underlying language representations in DLMs and their neural correlates, potentially providing insights for optimizing and improving language models by aligning them with the human brain's language-processing mechanisms.

摘要

深度语言模型(DLMs)已展现出卓越的语言理解和生成能力,促使研究人员探索其内部机制与人类语言认知处理之间的相似性。本研究调查了抽象摘要(ABS)模型与人类大脑之间的表征相似性(RS)及其与ABS任务性能的相关性。具体而言,使用表征相似性分析(RSA)来测量BART、PEGASUS和T5模型隐藏层的表征模式(RPs)与不同时空条件下人类大脑语言RPs之间的相似性。采用逐层消融操作,包括注意力消融和添加噪声,来检验隐藏层对模型性能的影响。结果表明,随着隐藏层深度的增加,模型的文本编码与人类大脑语言RPs越来越相似。与较浅的层相比,对较深层进行操作会导致摘要性能下降得更显著,突出了较深层在整合关键信息方面的关键作用。值得注意的是,该研究证实了这一假设,即与人类大脑活动表现出更高相似性的隐藏层在模型性能中发挥着更关键的作用,即使在控制困惑度之后,它们之间的相关性也达到了统计学意义。这些发现加深了我们对DLMs中语言表征的认知机制及其神经相关性的理解,有可能通过使语言模型与人类大脑的语言处理机制保持一致,为优化和改进语言模型提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33f2/11696092/9c0b4e7715ee/41598_2024_84530_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验