Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720.
Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin 10623, Germany.
J Neurosci. 2023 Apr 26;43(17):3144-3158. doi: 10.1523/JNEUROSCI.2459-21.2023. Epub 2023 Mar 27.
The meaning of words in natural language depends crucially on context. However, most neuroimaging studies of word meaning use isolated words and isolated sentences with little context. Because the brain may process natural language differently from how it processes simplified stimuli, there is a pressing need to determine whether prior results on word meaning generalize to natural language. fMRI was used to record human brain activity while four subjects (two female) read words in four conditions that vary in context: narratives, isolated sentences, blocks of semantically similar words, and isolated words. We then compared the signal-to-noise ratio (SNR) of evoked brain responses, and we used a voxelwise encoding modeling approach to compare the representation of semantic information across the four conditions. We find four consistent effects of varying context. First, stimuli with more context evoke brain responses with higher SNR across bilateral visual, temporal, parietal, and prefrontal cortices compared with stimuli with little context. Second, increasing context increases the representation of semantic information across bilateral temporal, parietal, and prefrontal cortices at the group level. In individual subjects, only natural language stimuli consistently evoke widespread representation of semantic information. Third, context affects voxel semantic tuning. Finally, models estimated using stimuli with little context do not generalize well to natural language. These results show that context has large effects on the quality of neuroimaging data and on the representation of meaning in the brain. Thus, neuroimaging studies that use stimuli with little context may not generalize well to the natural regime. Context is an important part of understanding the meaning of natural language, but most neuroimaging studies of meaning use isolated words and isolated sentences with little context. Here, we examined whether the results of neuroimaging studies that use out-of-context stimuli generalize to natural language. We find that increasing context improves the quality of neuro-imaging data and changes where and how semantic information is represented in the brain. These results suggest that findings from studies using out-of-context stimuli may not generalize to natural language used in daily life.
自然语言中的词汇意义很大程度上取决于语境。然而,大多数关于词义的神经影像学研究都使用孤立的单词和几乎没有上下文的孤立句子。由于大脑处理自然语言的方式可能与处理简化刺激的方式不同,因此迫切需要确定关于词义的先前研究结果是否适用于自然语言。研究人员使用 fMRI 记录了 4 名被试(2 名女性)阅读不同语境下的单词时的大脑活动,这些语境分别是:叙述、孤立的句子、语义相似的单词块和孤立的单词。然后,研究人员比较了诱发大脑反应的信噪比(SNR),并使用体素编码模型方法比较了这四种条件下语义信息的表示。研究人员发现语境变化有四个一致的影响。首先,与上下文较少的刺激相比,具有更多上下文的刺激在双侧视觉、颞叶、顶叶和前额叶皮层中引起的大脑反应具有更高的 SNR。其次,随着上下文的增加,双侧颞叶、顶叶和前额叶皮层的语义信息表示在群体水平上增加。在个体被试中,只有自然语言刺激才能一致地唤起语义信息的广泛表示。第三,语境影响体素的语义调谐。最后,使用上下文较少的刺激估计的模型并不能很好地推广到自然语言。这些结果表明,语境对神经影像学数据的质量和大脑中意义的表示有很大的影响。因此,使用上下文较少的刺激的神经影像学研究可能无法很好地推广到自然状态。语境是理解自然语言意义的重要组成部分,但大多数关于词义的神经影像学研究都使用孤立的单词和几乎没有语境的孤立句子。在这里,我们研究了使用脱离语境的刺激的神经影像学研究结果是否可以推广到自然语言。我们发现,增加语境可以提高神经影像学数据的质量,并改变大脑中语义信息的表示位置和方式。这些结果表明,使用脱离语境的刺激进行的研究结果可能不适用于日常生活中使用的自然语言。