Glitz Christiane, Dyekjær Jane Dannow, Vaitkus Dovydas, Babaei Mahsa, Welner Ditte Hededam, Borodina Irina
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220, 2800, Kgs. Lyngby, Denmark.
Appl Biochem Biotechnol. 2025 Apr;197(4):2356-2382. doi: 10.1007/s12010-024-05100-4. Epub 2025 Jan 2.
To cover the rising demand for natural food dyes, new sources and production methods are needed. Microbial fermentation of nature-identical colours, such as the red pigment betanin, has the potential to be a cost-efficient alternative to plant extraction. The last step of betanin production is catalysed by a UDP-glycosyltransferase (UGT). To find a high-performing UGT, we screened 27 UGTs from different plant species and tested their ability to produce betanin in vivo in Saccharomyces cerevisiae. We identified two new UGTs likely involved in the betanin synthesis in the plant they derive from: CqGT2 (UGT73A37) from Chenopodium quinoa and BgGT2 (UGT92X1) from Bougainvillea glabra. The betanin-producing UGTs were also tested in Yarrowia lipolytica, where CqGT2 was the best-performing glycosyltransferase for betanin production. While it has previously been shown that the UGTs can glycosylate either betanidin or cyclo-DOPA to ultimately form betanin, the molecular mechanism behind the preference for the acceptor molecule has not been elucidated. Therefore, we performed in silico structural analysis to characterise the betanin-producing UGTs further, particularly by looking into their binding mechanism. The docking model suggested that a smaller binding site found in some UGTs only allows glycosylation of cDOPA, while a wider binding site allows glycosylation of both cyclo-DOPA and betanidin.
为了满足对天然食用色素不断增长的需求,需要新的来源和生产方法。对与天然色素相同的颜色进行微生物发酵,例如红色色素甜菜红素,有可能成为一种比植物提取成本更低的替代方法。甜菜红素生产的最后一步由尿苷二磷酸糖基转移酶(UGT)催化。为了找到一种高效的UGT,我们从不同植物物种中筛选了27种UGT,并测试了它们在酿酒酵母体内生产甜菜红素的能力。我们鉴定出了两种可能参与其来源植物中甜菜红素合成的新UGT:藜麦中的CqGT2(UGT73A37)和叶子花中的BgGT2(UGT92X1)。还在解脂耶氏酵母中测试了生产甜菜红素的UGT,其中CqGT2是生产甜菜红素表现最佳的糖基转移酶。虽然之前已经表明UGT可以将甜菜色素或环多巴糖基化以最终形成甜菜红素,但对受体分子偏好背后的分子机制尚未阐明。因此,我们进行了计算机模拟结构分析,以进一步表征生产甜菜红素的UGT,特别是通过研究它们的结合机制。对接模型表明,在一些UGT中发现的较小结合位点仅允许环多巴糖基化,而较宽的结合位点则允许环多巴和甜菜色素都进行糖基化。