Suppr超能文献

用于研究内源性大麻素系统的化学探针

Chemical Probes for Investigating the Endocannabinoid System.

作者信息

Hanske Annaleah, Nazaré Marc, Grether Uwe

机构信息

Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany.

Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.

出版信息

Curr Top Behav Neurosci. 2025 Jan 3. doi: 10.1007/7854_2024_563.

Abstract

Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CBR) and type 2 (CBR) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.1, anandamide (N-arachidonoylethanolamine (AEA)) 1.2, and various proteins, regulates vital processes such as sleep, appetite, and memory, and holds significant therapeutic potential, especially for neurological disorders. Small molecule-derived pharmacological tools, or chemical probes, target key components of the ECS and are crucial for target validation, mechanistic studies, pathway elucidation, phenotypic screening, and drug discovery. These probes selectively interact with specific proteins or pathways, enabling researchers to modulate target activity and observe biological effects. When they carry an additional reporter group, they are referred to as labeled chemical probes. Developed through medicinal chemistry, structural biology, and high-throughput screening, effective chemical probes must be selective, potent, and depending on their purpose meet additional criteria such as cell permeability and metabolic stability.This chapter describes high-quality labeled and unlabeled chemical probes targeting ECS constituents that have been successfully applied for various research purposes. CBR and CBR, class A G protein-coupled receptors, are activated by 2-AG 1.1, AEA 1.2, and THC 3.1, with numerous ligands developed for these receptors. Imaging techniques like single-photon emission computed tomography, positron emission tomography, and fluorescently labeled CBR and CBR probes have enhanced CB receptor studies. CBR activation generally results in immunosuppressive effects, limiting tissue injury. AEA 1.2 is mainly degraded by fatty acid amide hydrolase (FAAH) or N-acylethanolamine acid amidase (NAAA) into ethanolamine and arachidonic acid (AA) 1.3. FAAH inhibitors increase endogenous fatty acid amides, providing analgesic effects without adverse effects. NAAA inhibitors reduce inflammation and pain in animal models. Diacylglycerol lipase (DAGL) is essential for 2-AG 1.1 biosynthesis, while monoacylglycerol lipase (MAGL) degrades 2-AG 1.1 into AA 1.3, thus regulating cannabinoid signaling. Multiple inhibitors targeting FAAH and MAGL have been generated, though NAAA and DAGL probe development lags behind. Similarly, advancements in inhibitors targeting endocannabinoid (eCB) cellular uptake or trafficking proteins like fatty acid-binding proteins have been slower. The endocannabinoidome (eCBome) includes the ECS and related molecules and receptors, offering therapeutic opportunities from non-THC cannabinoids and eCBome mediators. Ongoing research aims to refine chemical tools for ECS and eCBome study, addressing unmet medical needs in central nervous system disorders and beyond.

摘要

自早期文明以来,大麻就被用于治疗,20世纪60年代对关键大麻素Δ-四氢大麻酚(THC)3.1和大麻二酚进行了表征,从而在20世纪90年代发现了1型大麻素受体(CBR)和2型大麻素受体(CBR)以及内源性大麻素系统(ECS)。ECS涉及内源性配体,如2-花生四烯酸甘油酯(2-AG)1.1、花生四烯酸乙醇胺(N-花生四烯酰乙醇胺(AEA))1.2以及各种蛋白质,调节睡眠、食欲和记忆等重要生理过程,具有巨大的治疗潜力,特别是对于神经疾病。小分子衍生的药理学工具或化学探针靶向ECS的关键成分,对于靶点验证、机制研究、通路阐明、表型筛选和药物发现至关重要。这些探针与特定蛋白质或通路选择性相互作用,使研究人员能够调节靶点活性并观察生物学效应。当它们带有额外的报告基团时,就被称为标记化学探针。通过药物化学、结构生物学和高通量筛选开发的有效化学探针必须具有选择性、强效性,并根据其用途满足其他标准,如细胞通透性和代谢稳定性。本章描述了针对ECS成分的高质量标记和未标记化学探针,这些探针已成功应用于各种研究目的。CBR和CBR是A类G蛋白偶联受体,被2-AG 1.1、AEA 1.2和THC 3.1激活,针对这些受体开发了许多配体。单光子发射计算机断层扫描、正电子发射断层扫描和荧光标记的CBR和CBR探针等成像技术增强了CB受体研究。CBR激活通常会产生免疫抑制作用,限制组织损伤。AEA 1.2主要被脂肪酸酰胺水解酶(FAAH)或N-酰基乙醇胺酸酰胺酶(NAAA)降解为乙醇胺和花生四烯酸(AA)1.3。FAAH抑制剂可增加内源性脂肪酸酰胺,提供镇痛作用且无不良反应。NAAA抑制剂可减轻动物模型中的炎症和疼痛。二酰基甘油脂肪酶(DAGL)对2-AG 1.1的生物合成至关重要,而单酰基甘油脂肪酶(MAGL)将2-AG 1.1降解为AA 1.3,从而调节大麻素信号传导。已经产生了多种针对FAAH和MAGL的抑制剂,不过NAAA和DAGL探针的开发滞后。同样,针对内源性大麻素(eCB)细胞摄取或转运蛋白(如脂肪酸结合蛋白)的抑制剂的进展也较慢。内源性大麻素组(eCBome)包括ECS以及相关分子和受体,为非THC大麻素和eCBome介质提供了治疗机会。正在进行的研究旨在完善用于ECS和eCBome研究的化学工具,以满足中枢神经系统疾病及其他疾病中未满足的医疗需求。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验