Suppr超能文献

小细胞肺癌中抗体药物偶联物靶点的评估

Assessment of targets of antibody drug conjugates in SCLC.

作者信息

Ajay Abhishek, Wang Han, Rezvani Ali, Savari Omid, Grubb Brandon J, McColl Karen S, Yoon Suzy, Joseph Peronne L, Kopp Shelby R, Kresak Adam M, Peacock Craig D, Wildey Gary M, Lam Minh, Miyagi Masaru, Kao Hung-Ying, Dowlati Afshin

机构信息

Division of Hematology and Oncology, University Hospitals Seidman Cancer Center, and Case Western Reserve University, Cleveland, OH, USA.

Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA.

出版信息

NPJ Precis Oncol. 2025 Jan 2;9(1):1. doi: 10.1038/s41698-024-00784-7.

Abstract

Antibody-drug conjugate (ADC) therapy has transformed treatment for several solid tumors, including small cell lung cancer (SCLC). However, significant challenges remain, including systemic toxicity, acquired resistance, and the lack of reliable biomarkers for patient selection. To enhance the effectiveness of ADC therapies in SCLC, we focused on target selection in this study by investigating the expression of ADC targets - SEZ6, DLL3, CD276, and TACSTD2 - in cell lines and patient samples. SEZ6 expression was significantly elevated in various SCLC transcriptional subtypes, particularly ASCL1, and exhibited gender-specific differences, being lower in women. DLL3 was primarily observed in the ASCL1 subtype, while CD276 showed high expression in non-neuroendocrine subtypes. TACSTD2 levels were generally low and attenuated in lymph nodes and brain metastases compared to primary tumors. Our findings underscore the importance of understanding target expression patterns to optimize ADC therapy and advance precision medicine in SCLC treatment.

摘要

抗体药物偶联物(ADC)疗法已经改变了包括小细胞肺癌(SCLC)在内的多种实体瘤的治疗方式。然而,仍然存在重大挑战,包括全身毒性、获得性耐药以及缺乏用于患者选择的可靠生物标志物。为了提高ADC疗法在SCLC中的有效性,我们在本研究中通过调查ADC靶点——SEZ6、DLL3、CD276和TACSTD2——在细胞系和患者样本中的表达来聚焦于靶点选择。SEZ6在各种SCLC转录亚型中显著升高,尤其是ASCL1亚型,并且表现出性别特异性差异,在女性中较低。DLL3主要在ASCL1亚型中观察到,而CD276在非神经内分泌亚型中高表达。与原发性肿瘤相比,TACSTD2水平通常较低,并且在淋巴结和脑转移中减弱。我们的研究结果强调了了解靶点表达模式对于优化ADC疗法和推进SCLC治疗中的精准医学的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72f6/11696236/2f4dd9390287/41698_2024_784_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验