Suppr超能文献

用于情绪障碍的微扰理论机器学习:去甲肾上腺素转运体(NET)和5-羟色胺转运体(SERT)蛋白双重抑制剂的虚拟设计

Perturbation-theory machine learning for mood disorders: virtual design of dual inhibitors of NET and SERT proteins.

作者信息

Kleandrova Valeria V, Cordeiro M Natália D S, Speck-Planche Alejandro

机构信息

LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, 4169-007, Portugal.

出版信息

BMC Chem. 2025 Jan 2;19(1):2. doi: 10.1186/s13065-024-01376-z.

Abstract

Mood disorders affect the daily lives of millions of people worldwide. The search for more efficient therapies for mood disorders remains an active field of research. In silico approaches can accelerate the search for inhibitors against protein targets related to mood disorders. Here, we developed the first model perturbation-theory machine learning model based on a multiplayer perceptron network (PTML-MLP) for the simultaneous prediction and design of virtual dual-target inhibitors against two proteins associated with mood disorders, namely norepinephrine and serotonin transporters (NET and SERT, respectively). The PTML-MLP model had an accuracy of around 80%. From a chemical point of view, the PTML-MLP model could accurately identify both single- and dual-target inhibitors present in the dataset used to build it. Through the application of the fragment-based topological design (FBTD) approach, the molecular descriptors (multi-label graph-based indices) present in the PTML-MLP model were physicochemically and structurally interpreted. Such interpretations enabled (a) the extraction of different molecular fragments with a positive influence on the enhancement of the dual-target activity and (b) the design of four new drug-like molecules by assembling (fusing and/or connecting) several suitable molecular fragments. The designed molecules were predicted by the PTML-MLP model to exhibit dual-target activity against the NET and SERT proteins. These predictions, together with the estimated druglikeness suggest that the designed molecules could be new promising chemotypes to be considered for future synthesis and biological experimentation in the context of treatments for mood disorders.

摘要

情绪障碍影响着全球数百万人的日常生活。寻找更有效的情绪障碍治疗方法仍然是一个活跃的研究领域。计算机模拟方法可以加速针对与情绪障碍相关的蛋白质靶点的抑制剂的搜索。在此,我们基于多层感知器网络开发了首个模型扰动理论机器学习模型(PTML-MLP),用于同时预测和设计针对两种与情绪障碍相关的蛋白质(即去甲肾上腺素和5-羟色胺转运体,分别为NET和SERT)的虚拟双靶点抑制剂。PTML-MLP模型的准确率约为80%。从化学角度来看,PTML-MLP模型能够准确识别用于构建该模型的数据集中存在的单靶点和双靶点抑制剂。通过应用基于片段的拓扑设计(FBTD)方法,对PTML-MLP模型中存在的分子描述符(基于多标签图的指标)进行了物理化学和结构方面的解释。这样的解释使得(a)能够提取对双靶点活性增强有积极影响的不同分子片段,以及(b)通过组装(融合和/或连接)几个合适的分子片段设计出四种新的类药物分子。PTML-MLP模型预测所设计的分子对NET和SERT蛋白具有双靶点活性。这些预测结果以及估计的类药性质表明,所设计的分子可能是在情绪障碍治疗背景下未来合成和生物学实验中值得考虑的新的有前景的化学类型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877d/11697510/bde798ed6a75/13065_2024_1376_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验