Suppr超能文献

情境感知分析提高了家庭睡眠呼吸暂停测试的自动评分准确性。

Context-aware analysis enhances autoscoring accuracy of home sleep apnea testing.

作者信息

Massie Frederik, Vits Steven, Verbraecken Johan, Bergmann Jeroen

机构信息

Natural Interaction Lab, Department of Engineering, University of Oxford, Oxford, United Kingdom.

Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.

出版信息

J Clin Sleep Med. 2025 May 1;21(5):789-804. doi: 10.5664/jcsm.11534.

Abstract

STUDY OBJECTIVES

Home sleep apnea testing based on peripheral arterial tonometry is increasingly being deployed because of its ability to test for multiple nights. However, home sleep apnea tests based on peripheral arterial tonometry do not have access to modalities such as airflow and cortical arousals and instead rely on alternative sources of information to detect respiratory events. This results in an a priori performance disadvantage. In this study, we describe the Panorama algorithm, which aims to reduce this disadvantage by incorporating information from characteristically repetitive sequences in physiological changes associated with respiratory events. These include changes in peripheral arterial tone, pulse rate, and oxygen saturation. The method was designed to facilitate manual review by providing the scoring rationale for each respiratory event.

METHODS

The method was developed and evaluated using a dataset of 266 participants from a multicentric cohort suspected of having obstructive sleep apnea. All participants underwent simultaneous polysomnography and home sleep apnea testing based on peripheral arterial tonometry, and all polysomnography data were double-scored. Scoring was performed according to the 3% and 4% rules for hypopnea scoring. Clinical endpoint parameters, including the obstructive sleep apnea severity categorization accuracy and Cohen's kappa, were selected to compare the algorithm to a conventional context-unaware algorithm. Data analysis and reporting followed the TRIPOD+AI reporting guidance for prediction models that use machine learning.

RESULTS

Regarding obstructive sleep apnea severity categorization accuracy, the Panorama algorithm significantly outperformed context-unaware autoscoring by 9% using 3% rule scoring and 7% using 4% rule scoring.

CONCLUSIONS

The context-aware method significantly improves the performance of home sleep apnea tests based on peripheral arterial tonometry while still facilitating scoring review by providing event-specific scoring rationale.

CLINICAL TRIAL REGISTRATION

Registry: ClinicalTrials.gov; Name: A Validation Study of the NightOwl PAT-based Home Sleep Apnea Test; URL: https://clinicaltrials.gov/ct2/show/NCT04191668; Identifier: NCT04191668.

CITATION

Massie F, Vits S, Verbraecken J, Bergmann J. Context-aware analysis enhances autoscoring accuracy of home sleep apnea testing. 2025;21(5):789-804.

摘要

研究目的

基于外周动脉张力测量的家庭睡眠呼吸暂停检测因其能够进行多晚检测而越来越多地被采用。然而,基于外周动脉张力测量的家庭睡眠呼吸暂停检测无法获取气流和皮层觉醒等模式,而是依赖其他信息来源来检测呼吸事件。这导致了先验性能劣势。在本研究中,我们描述了全景算法,该算法旨在通过纳入与呼吸事件相关的生理变化中特征性重复序列的信息来减少这一劣势。这些变化包括外周动脉张力、脉搏率和血氧饱和度的变化。该方法旨在通过为每个呼吸事件提供评分依据来便于人工审核。

方法

使用来自一个多中心队列的266名疑似阻塞性睡眠呼吸暂停参与者的数据集开发并评估该方法。所有参与者同时接受多导睡眠图检查和基于外周动脉张力测量的家庭睡眠呼吸暂停检测,所有多导睡眠图数据都进行了双重评分。根据呼吸浅慢的3%和4%规则进行评分。选择临床终点参数,包括阻塞性睡眠呼吸暂停严重程度分类准确性和科恩kappa系数,将该算法与传统的无上下文感知算法进行比较。数据分析和报告遵循使用机器学习的预测模型的TRIPOD+AI报告指南。

结果

关于阻塞性睡眠呼吸暂停严重程度分类准确性,全景算法在使用3%规则评分时比无上下文感知自动评分显著高出9%,在使用4%规则评分时高出7%。

结论

上下文感知方法显著提高了基于外周动脉张力测量的家庭睡眠呼吸暂停检测的性能,同时仍通过提供特定事件的评分依据来便于评分审核。

临床试验注册

注册机构:ClinicalTrials.gov;名称:基于NightOwl PAT的家庭睡眠呼吸暂停检测的验证研究;网址:https://clinicaltrials.gov/ct2/show/NCT04191668;标识符:NCT04191668。

引用文献

Massie F, Vits S, Verbraecken J, Bergmann J. 上下文感知分析提高了家庭睡眠呼吸暂停检测的自动评分准确性。2025;21(5):789 - 804。

相似文献

1
Context-aware analysis enhances autoscoring accuracy of home sleep apnea testing.
J Clin Sleep Med. 2025 May 1;21(5):789-804. doi: 10.5664/jcsm.11534.
4
Clinical validation of a wireless patch-based polysomnography system.
J Clin Sleep Med. 2025 May 1;21(5):813-823. doi: 10.5664/jcsm.11524.
6
Multidiagnostic chest-worn patch to detect obstructive sleep apnea and cardiac arrhythmias.
J Clin Sleep Med. 2025 May 1;21(5):855-866. doi: 10.5664/jcsm.11522.
8
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
10
Diagnostic accuracy of the Belun ring in children at risk of obstructive sleep apnea.
J Clin Sleep Med. 2025 Jan 1;21(1):123-128. doi: 10.5664/jcsm.11348.

本文引用的文献

2
A multicentric validation study of a novel home sleep apnea test based on peripheral arterial tonometry.
Sleep. 2022 May 12;45(5). doi: 10.1093/sleep/zsac028. Epub 2022 Feb 2.
7
An Evaluation of the NightOwl Home Sleep Apnea Testing System.
J Clin Sleep Med. 2018 Oct 15;14(10):1791-1796. doi: 10.5664/jcsm.7398.
10
Comparison of three actigraphic algorithms used to evaluate sleep in patients with obstructive sleep apnea.
Sleep Breath. 2013 Mar;17(1):297-304. doi: 10.1007/s11325-012-0689-z. Epub 2012 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验