Suppr超能文献

酰胺质子转移成像在宫颈癌诊断、分级及预后预测中的作用:一项系统评价与Meta分析

Effects of amide proton transfer imaging in diagnosis, grading and prognosis prediction of cervical cancer: A systematic review and meta-analysis.

作者信息

Yang Chongshuang, Hassan Hasyma Abu, Omar Nur Farhayu, Soo Tze Hui, Shuib Bin Yahaya Ahmad, Shi Tianliang, Luo Yinbin, Wu Min

机构信息

Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.

Department of Radiology, Tongren People's Hospital, Tongren, Guizhou Province, 554300, China.

出版信息

Heliyon. 2024 Nov 8;10(22):e40291. doi: 10.1016/j.heliyon.2024.e40291. eCollection 2024 Nov 30.

Abstract

PURPOSE

To assess the effectiveness of Amide Proton Transfer (APT) imaging in predicting the histopathological characteristics of cervical cancer.

METHODS

A comprehensive literature search was conducted across multiple databases, covering studies until December 27, 2023. The meta-analysis was performed using Stata 15 and Review Manager 5.4 software. Key metrics analyzed included pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio (DOR), and summary receiver operating characteristic curves. The analysis focused on differentiating cervical cancer types, squamous carcinoma differentiation, and lymph node involvement. Meta-regression was employed to investigate heterogeneity.

RESULTS

Thirteen studies involving 868 patients were included in the meta-analysis. For differentiating adenocarcinoma from squamous carcinoma, the pooled sensitivity was 0.82 (95%CI: 0.71-0.90), specificity was 0.65 (95%CI: 0.48-0.79), and DOR was 9 (95%CI: 1.6-3.5). When distinguishing poorly differentiated from moderately/well-differentiated squamous carcinoma, the sensitivity was 0.74 (95%CI: 0.66-0.81), specificity was 0.83 (95%CI: 0.75-0.89), and DOR was 14 (95%CI: 8-23). For identifying lymph node involvement, the sensitivity was 0.87 (95%CI: 0.78-0.92), specificity was 0.66 (95%CI: 0.59-0.73), and DOR was 13 (95%CI: 7-26). No publication bias was detected.

CONCLUSIONS

APT imaging demonstrates high sensitivity and specificity in distinguishing between cervical cancer types, grading squamous carcinoma, and detecting lymph node involvement. It can be considered a reliable technique for predicting the pathological features of cervical cancer in clinical practice.

摘要

目的

评估酰胺质子转移(APT)成像在预测宫颈癌组织病理学特征方面的有效性。

方法

在多个数据库中进行了全面的文献检索,涵盖截至2023年12月27日的研究。使用Stata 15和Review Manager 5.4软件进行荟萃分析。分析的关键指标包括合并敏感度、特异度、阳性似然比、阴性似然比、诊断比值比(DOR)和汇总受试者工作特征曲线。分析重点在于区分宫颈癌类型、鳞状细胞癌分化程度和淋巴结受累情况。采用Meta回归研究异质性。

结果

荟萃分析纳入了13项研究,共868例患者。在区分腺癌与鳞状细胞癌方面,合并敏感度为0.82(95%CI:0.71 - 0.90),特异度为0.65(95%CI:0.48 - 0.79),DOR为9(95%CI:1.6 - 3.5)。在区分低分化与中/高分化鳞状细胞癌时,敏感度为0.74(95%CI:0.66 - 0.81),特异度为0.83(95%CI:0.75 - 0.89),DOR为14(95%CI:8 - 23)。在识别淋巴结受累方面,敏感度为0.87(95%CI:0.78 - 0.92),特异度为0.66(95%CI:0.59 - 0.73),DOR为13(95%CI:7 - 26)。未检测到发表偏倚。

结论

APT成像在区分宫颈癌类型、鳞状细胞癌分级和检测淋巴结受累方面表现出高敏感度和特异度。在临床实践中,它可被视为预测宫颈癌病理特征的可靠技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93b2/11693897/b0ee979a96d5/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验