Suppr超能文献

基于磁共振成像的影像组学预测宫颈癌脉管间隙浸润的Meta分析

Radiomics based on MRI in predicting lymphovascular space invasion of cervical cancer: a meta-analysis.

作者信息

Yang Chongshuang, Wu Min, Zhang Jiancheng, Qian Hongwei, Fu Xiangyang, Yang Jing, Luo Yingbin, Qin Zhihong, Shi Tianliang

机构信息

Department of Radiology, Tongren People's Hospital, Tongren, China.

Department of Radiology, Wanshan District People's Hospital, Tongren, China.

出版信息

Front Oncol. 2024 Oct 17;14:1425078. doi: 10.3389/fonc.2024.1425078. eCollection 2024.

Abstract

OBJECTIVE

The objective of this meta-analysis is to assess the efficacy of radiomics techniques utilizing magnetic resonance imaging (MRI) for predicting lymphovascular space invasion (LVSI) in patients with cervical cancer (CC).

METHODS

A comprehensive literature search was conducted in databases including PubMed, Embase, Cochrane Library, Medline, Scopus, CNKI, and Wanfang, with studies published up to 08/04/2024, being considered for inclusion. The meta-analysis was performed using Stata 15 and Review Manager 5.4. The quality of the included studies was evaluated using the Quality Assessment of Diagnostic Accuracy Studies 2 and Radiomics Quality Score tools. The analysis encompassed the pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR). Summary ROC curves were constructed, and the AUC was calculated. Heterogeneity was investigated using meta-regression. Statistical significance was set at ≤ 0.05.

RESULTS

There were 13 studies involving a total of 2,245 patients that were included in the meta-analysis. The overall sensitivity and specificity of the MRI-based model in the Training set were 83% (95% CI: 77%-87%) and 72% (95% CI: 74%-88%), respectively. The AUC, DOR, PLR, and NLR of the MRI-based model in the Training set were 0.89 (95% CI: 0.86-0.91), 22 (95% CI: 12-40), 4.6 (95% CI: 3.1-7.0), and 0.21 (95% CI: 0.16-0.29), respectively. Subgroup analysis revealed that the AUC of the model combining radiomics with clinical factors [0.90 (95% CI: 0.87-0.93)] was superior to models based on T2-weighted imaging (T2WI) sequence [0.78 (95% CI: 0.74-0.81)], contrast-enhanced T1-weighted imaging (T1WI-CE) sequence [0.85 (95% CI: 0.82-0.88)], and multiple sequences [0.86 (95% CI: 0.82-0.89)] in the Training set. The pooled sensitivity and specificity of the model integrating radiomics with clinical factors [83% (95% CI: 73%-89%) and 86% (95% CI: 73%-93%)] surpassed those of models based on the T2WI sequence [79% (95% CI: 71%-85%) and 72% (95% CI: 67%-76%)], T1WI-CE sequence [78% (95% CI: 67%-86%) and 78% (95% CI: 68%-86%)], and multiple sequences [78% (95% CI: 67%-87%) and 79% (95% CI: 70%-87%)], respectively. Funnel plot analysis indicated an absence of publication bias ( > 0.05).

CONCLUSION

MRI-based radiomics demonstrates excellent diagnostic performance in predicting LVSI in CC patients. The diagnostic performance of models combing radiomics and clinical factors is superior to that of models utilizing radiomics alone.

SYSTEMATIC REVIEW REGISTRATION

https://www.crd.york.ac.uk/PROSPERO/#myprospero, identifier CRD42024538007.

摘要

目的

本荟萃分析旨在评估利用磁共振成像(MRI)的放射组学技术预测宫颈癌(CC)患者淋巴血管间隙浸润(LVSI)的疗效。

方法

在包括PubMed、Embase、Cochrane图书馆、Medline、Scopus、中国知网和万方在内的数据库中进行了全面的文献检索,纳入截至2024年4月8日发表的研究。使用Stata 15和Review Manager 5.4进行荟萃分析。使用诊断准确性研究质量评估2和放射组学质量评分工具评估纳入研究的质量。分析包括合并敏感度、特异度、阳性似然比(PLR)、阴性似然比(NLR)和诊断比值比(DOR)。构建汇总ROC曲线并计算AUC。使用元回归研究异质性。设定统计学显著性为≤0.05。

结果

共有13项研究涉及2245例患者纳入荟萃分析。训练集中基于MRI的模型的总体敏感度和特异度分别为83%(95%CI:77%-87%)和72%(95%CI:74%-88%)。训练集中基于MRI的模型的AUC、DOR、PLR和NLR分别为0.89(95%CI:0.86-0.91)、22(95%CI:12-40)、4.6(95%CI:3.1-7.0)和0.21(95%CI:0.16-0.29)。亚组分析显示,在训练集中,将放射组学与临床因素相结合的模型的AUC[0.90(95%CI:0.87-0.93)]优于基于T2加权成像(T2WI)序列[0.78(95%CI:0.74-0.81)]、对比增强T1加权成像(T1WI-CE)序列[0.85(95%CI:0.82-0.88)]和多个序列[0.86(95%CI:0.82-0.89)]的模型。将放射组学与临床因素相结合的模型的合并敏感度和特异度[83%(95%CI:73%-89%)和86%(95%CI:73%-93%)]分别超过基于T2WI序列[79%(95%CI:71%-85%)和72%(95%CI:67%-76%)]、T1WI-CE序列[78%(95%CI:67%-86%)和78%(95%CI:68%-86%)]和多个序列[78%(95%CI:67%-87%)和79%(95%CI:70%-87%)]的模型。漏斗图分析表明不存在发表偏倚(>0.05)。

结论

基于MRI的放射组学在预测CC患者的LVSI方面表现出优异的诊断性能。将放射组学与临床因素相结合的模型的诊断性能优于仅使用放射组学的模型。

系统评价注册

https://www.crd.york.ac.uk/PROSPERO/#myprospero,标识符CRD42024538007。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/feae/11524797/c9abfb3565e5/fonc-14-1425078-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验