Imhoff Andrea, Sweeney Noreena L, Bongard Robert D, Syrlybaeva Raulia, Gupta Ankan, Del Carpio Edgar, Talipov Marat R, Garcia-Keller Costanza, Crans Debbie C, Ramchandran Ramani, Sem Daniel S
Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, United States.
Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, Las Cruces, NM, United States.
Front Chem Biol. 2024;3. doi: 10.3389/fchbi.2024.1385560. Epub 2024 Aug 5.
Dual specific phosphatases (DUSPs) are mitogen-activated protein kinase (MAPK) regulators, which also serve as drug targets for treating various vascular diseases. Previously, we have presented mechanistic characterizations of DUSP5 and its interaction with pERK, proposing a dual active site.
Herein, we characterize the interactions between the DUSP5 phosphatase domain and the pT-E-pY activation loop of ERK2, with specific active site assignments. We also report the full NMR chemical shift assignments of DUSP5 that now enable chemical shift perturbation and dynamics studies.
Both phosphates of the pT-E-pY tripeptide are dephosphorylated, based on P NMR; but, steady state kinetic studies of the tripeptide both as a substrate and as an inhibitor indicate a preference for binding and dephosphorylation of the phospho-tyrosine before the phospho-threonine. Catalytic efficiency (k/K) is 3.7 MS for T-E-pY vs 1.3 MS for pT-E-Y, although the diphosphorylated peptide (pT-E-pY) is a better substrate than both, with k/K = 18.2 MS. Steady state inhibition studies with the pNPP substrate yields K values for the peptide inhibitors of: 15.82 mM (pT-E-Y), 4.932 mM (T-E-pY), 1.672 mM (pT-E-pY). Steady state inhibition studies with pNPP substrate and with vanadate or phosphate inhibitors indicated competitive inhibition with Kis values of 0.0006122 mM (sodium vanadate) and 17.32 mM (sodium phosphate), similar to other Protein Tyrosine Phosphatases with an active site cysteine nucleophile that go through a five-coordinate high energy transition state or intermediate. Molecular dynamics (MD) studies confirm preferential binding of the diphosphorylated peptide, but with preference for binding the pY over the pT reside in the catalytic site proximal to the Cys263 nucleophile. Based on MD, the monophosphorylated peptide binds tighter if phosphorylated on the Tyr vs the Thr. And, if the starting pose of the docked diphosphorylated peptide has pT in the catalytic site, it will adjust to have the pY in the catalytic site, suggesting a dynamic shifting of the peptide orientation. 2D H-N HSQC chemical shift perturbation studies confirm that DUSP5 with tripeptide bound is in a dynamic state, with extensive exchange broadening observed-especially of catalytic site residues. The availability of NMR chemical shift assignments enables additional future studies of DUSP5 binding to the ERK2 diphosphorylated activation loop.
These studies indicate a preference for pY before pT binding, but with ability to bind and dephosphorylate both residues, and with a dynamic active site pocket that accommodates multiple tripeptide orientations.
双特异性磷酸酶(DUSPs)是丝裂原活化蛋白激酶(MAPK)调节剂,也是治疗各种血管疾病的药物靶点。此前,我们已对DUSP5及其与pERK的相互作用进行了机制表征,提出了双活性位点。
在此,我们表征了DUSP5磷酸酶结构域与ERK2的pT-E-pY激活环之间的相互作用,并进行了特定活性位点的分配。我们还报告了DUSP5的完整核磁共振化学位移归属,这现在使得能够进行化学位移扰动和动力学研究。
基于磷核磁共振,pT-E-pY三肽的两个磷酸基团均被去磷酸化;但是,将该三肽作为底物和抑制剂的稳态动力学研究表明,相较于磷酸苏氨酸,磷酸酪氨酸更倾向于结合和去磷酸化。催化效率(k/K)对于T-E-pY为3.7 M⁻¹s⁻¹,对于pT-E-Y为1.3 M⁻¹s⁻¹,尽管双磷酸化肽(pT-E-pY)是比两者都更好的底物,k/K = 18.2 M⁻¹s⁻¹。使用对硝基苯磷酸酯(pNPP)底物进行的稳态抑制研究得出肽抑制剂的K值为:15.82 mM(pT-E-Y)、4.932 mM(T-E-pY)、1.672 mM(pT-E-pY)。使用pNPP底物以及钒酸盐或磷酸盐抑制剂进行的稳态抑制研究表明存在竞争性抑制,Kis值分别为0.0006122 mM(钒酸钠)和17.32 mM(磷酸钠),这与其他具有活性位点半胱氨酸亲核试剂且经历五配位高能过渡态或中间体的蛋白酪氨酸磷酸酶类似。分子动力学(MD)研究证实双磷酸化肽具有优先结合性,但在靠近Cys263亲核试剂的催化位点中,相较于磷酸苏氨酸,磷酸酪氨酸更倾向于结合。基于分子动力学,单磷酸化肽在酪氨酸上磷酸化时比在苏氨酸上磷酸化时结合更紧密。并且,如果对接的双磷酸化肽的起始构象在催化位点中有磷酸苏氨酸,它将调整为在催化位点中有磷酸酪氨酸,这表明肽取向存在动态变化。二维¹H-¹⁵N HSQC化学位移扰动研究证实结合了三肽的DUSP5处于动态状态,观察到广泛的交换加宽——尤其是催化位点残基。核磁共振化学位移归属的可得性使得未来能够对DUSP5与ERK2双磷酸化激活环的结合进行更多研究。
这些研究表明在结合时磷酸酪氨酸优先于磷酸苏氨酸,但能够结合并使两个残基去磷酸化,并且具有容纳多种三肽取向的动态活性位点口袋。