Wang Ren, Liu Qiumei, You Wenhua, Wang Huiyu, Chen Yun
The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, Jiangsu Province, China.
The Affiliated Huai'an No. 1 People's Hospital, Nanjing Medical University, West Road of the Yellow River, Huai'an 223300, Jiangsu Province, China.
Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae686.
Recent studies suggest cGAS-STING pathway may play a crucial role in the genesis and development of hepatocellular carcinoma (HCC), closely associated with classical pathways and tumor immunity. We aimed to develop models predicting survival and anti-PD-1/PD-L1 outcomes centered on the cGAS-STING pathway in HCC. We identified classical pathways highly correlated with cGAS-STING pathway and constructed transformer survival model preserving raw structure of pathways. We also developed explainable XGBoost model for predicting anti-PD-1/PD-L1 outcomes using SHAP algorithm. We trained and validated transformer survival model on pan-cancer cohort and tested it on three independent HCC cohorts. Using 0.5 as threshold across cohorts, we divided each HCC cohort into two groups and calculated P values with log-rank test. TCGA-LIHC: C-index = 0.750, P = 1.52e-11; ICGC-LIRI-JP: C-index = 0.741, P = .00138; GSE144269: C-index = 0.647, P = .0233. We trained and validated [area under the receiver operating characteristic curve (AUC) = 0.777] XGBoost model on immunotherapy datasets and tested it on GSE78220 (AUC = 0.789); we also tested XGBoost model on HCC anti-PD-L1 cohort (AUC = 0.719). Our deep learning model and XGBoost model demonstrate potential in predicting survival risks and anti-PD-1/PD-L1 outcomes in HCC. We deployed these two prediction models to the GitHub repository and provided detailed instructions for their usage: deep learning survival model, https://github.com/mlwalker123/CSP_survival_model; XGBoost immunotherapy model, https://github.com/mlwalker123/CSP_immunotherapy_model.
近期研究表明,cGAS-STING通路可能在肝细胞癌(HCC)的发生发展中起关键作用,与经典通路及肿瘤免疫密切相关。我们旨在开发以HCC中cGAS-STING通路为核心的预测生存及抗PD-1/PD-L1疗效的模型。我们鉴定了与cGAS-STING通路高度相关的经典通路,并构建了保留通路原始结构的Transformer生存模型。我们还使用SHAP算法开发了用于预测抗PD-1/PD-L1疗效的可解释XGBoost模型。我们在泛癌队列上训练并验证了Transformer生存模型,并在三个独立的HCC队列上进行了测试。以0.5作为各队列的阈值,我们将每个HCC队列分为两组,并使用对数秩检验计算P值。TCGA-LIHC:C指数 = 0.750,P = 1.52e-11;ICGC-LIRI-JP:C指数 = 0.741,P = 0.00138;GSE144269:C指数 = 0.647,P = 0.0233。我们在免疫治疗数据集上训练并验证了[受试者操作特征曲线下面积(AUC)= 0.777]XGBoost模型,并在GSE78220上进行了测试(AUC = 0.789);我们还在HCC抗PD-L1队列上测试了XGBoost模型(AUC = 0.719)。我们的深度学习模型和XGBoost模型在预测HCC的生存风险及抗PD-1/PD-L1疗效方面显示出潜力。我们将这两个预测模型部署到了GitHub仓库,并提供了详细的使用说明:深度学习生存模型,https://github.com/mlwalker123/CSP_survival_model;XGBoost免疫治疗模型,https://github.com/mlwalker123/CSP_immunotherapy_model。