Yang Qianci, Traulsen Arne, Altrock Philipp M
Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306, Ploen, Germany.
Bull Math Biol. 2025 Jan 3;87(2):24. doi: 10.1007/s11538-024-01400-2.
The human immune system can recognize, attack, and eliminate cancer cells, but cancers can escape this immune surveillance. Variants of ecological predator-prey models can capture the dynamics of such cancer control mechanisms by adaptive immune system cells. These dynamical systems describe, e.g., tumor cell-effector T cell conjugation, immune cell activation, cancer cell killing, and T cell exhaustion. Target (tumor) cell-T cell conjugation is integral to the adaptive immune system's cancer control and immunotherapy. However, whether conjugate dynamics should be explicitly included in mathematical models of cancer-immune interactions is incompletely understood. Here, we analyze the dynamics of a cancer-effector T cell system and focus on the impact of explicitly modeling the conjugate compartment to investigate the role of cellular conjugate dynamics. We formulate a deterministic modeling framework to compare possible equilibria and their stability, such as tumor extinction, tumor-immune coexistence (tumor control), or tumor escape. We also formulate the stochastic analog of this system to analyze the impact of demographic fluctuations that arise when cell populations are small. We find that explicit consideration of a conjugate compartment can (i) change long-term steady-state, (ii) critically change the time to reach an equilibrium, (iii) alter the probability of tumor escape, and (iv) lead to very different extinction time distributions. Thus, we demonstrate the importance of the conjugate compartment in defining tumor-effector T cell interactions. Accounting for transitionary compartments of cellular interactions may better capture the dynamics of tumor control and progression.
人类免疫系统能够识别、攻击并清除癌细胞,但癌症能够逃避这种免疫监视。生态捕食者 - 猎物模型的变体可以通过适应性免疫系统细胞捕捉这种癌症控制机制的动态变化。这些动态系统描述了例如肿瘤细胞与效应T细胞的结合、免疫细胞激活、癌细胞杀伤以及T细胞耗竭等情况。靶标(肿瘤)细胞与T细胞的结合对于适应性免疫系统的癌症控制和免疫治疗至关重要。然而,共轭动力学是否应明确纳入癌症 - 免疫相互作用的数学模型中,目前尚未完全清楚。在此,我们分析癌症 - 效应T细胞系统的动态变化,并着重研究明确建模共轭区室的影响,以探究细胞共轭动力学的作用。我们构建了一个确定性建模框架,以比较可能的平衡点及其稳定性,如肿瘤消除、肿瘤 - 免疫共存(肿瘤控制)或肿瘤逃逸。我们还构建了该系统的随机模拟模型,以分析细胞群体较小时出现的种群波动的影响。我们发现,明确考虑共轭区室可以(i)改变长期稳态,(ii)显著改变达到平衡的时间,(iii)改变肿瘤逃逸的概率,以及(iv)导致截然不同的灭绝时间分布。因此,我们证明了共轭区室在定义肿瘤 - 效应T细胞相互作用中的重要性。考虑细胞相互作用的过渡区室可能会更好地捕捉肿瘤控制和进展的动态变化。