Ciuperca Gabriela
Institut Camille Jordan, UMR 5208, Université Claude Bernard Lyon 1, Bat. Braconnier, 43, blvd du 11 novembre 1918, F - 69622, Villeurbanne Cedex, France.
Lifetime Data Anal. 2025 Jan;31(1):149-186. doi: 10.1007/s10985-024-09643-w. Epub 2025 Jan 3.
Based on the expectile loss function and the adaptive LASSO penalty, the paper proposes and studies the estimation methods for the accelerated failure time (AFT) model. In this approach, we need to estimate the survival function of the censoring variable by the Kaplan-Meier estimator. The AFT model parameters are first estimated by the expectile method and afterwards, when the number of explanatory variables can be large, by the adaptive LASSO expectile method which directly carries out the automatic selection of variables. We also obtain the convergence rate and asymptotic normality for the two estimators, while showing the sparsity property for the censored adaptive LASSO expectile estimator. A numerical study using Monte Carlo simulations confirms the theoretical results and demonstrates the competitive performance of the two proposed estimators. The usefulness of these estimators is illustrated by applying them to three survival data sets.
基于期望损失函数和自适应LASSO惩罚,本文提出并研究了加速失效时间(AFT)模型的估计方法。在这种方法中,我们需要用Kaplan-Meier估计器来估计删失变量的生存函数。AFT模型参数首先通过期望分位数方法进行估计,之后,当解释变量数量可能很大时,通过自适应LASSO期望分位数方法直接进行变量的自动选择。我们还得到了这两种估计器的收敛速度和渐近正态性,同时展示了删失自适应LASSO期望分位数估计器的稀疏性。使用蒙特卡罗模拟的数值研究证实了理论结果,并展示了所提出的两种估计器的竞争性能。将这些估计器应用于三个生存数据集说明了它们的有用性。