Stojadinovic Miroslav, Stojadinovic Milorad, Jankovic Slobodan
Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000, Kragujevac, Serbia.
Clinic for Nephrology, University Clinical Center of Serbia, Belgrade, Serbia.
Int Urol Nephrol. 2025 Jun;57(6):1737-1746. doi: 10.1007/s11255-024-04342-9. Epub 2025 Jan 3.
Intermediate-risk prostate cancer (IR PCa) is the most common risk group for localized prostate cancer. This study aimed to develop a machine learning (ML) model that utilizes biopsy predictors to estimate the probability of IR PCa and assess its performance compared to the traditional clinical model.
Between January 2017 and December 2022, patients with prostate-specific antigen (PSA) values of ≤ 20 ng/mL underwent transrectal ultrasonography-guided prostate biopsies. Patient's age, PSA, digital rectal exam, prostate volume, PSA density (PSAD), and previous negative biopsy, number of positive cores, Gleason score, and biopsy outcome were recorded. Patients are categorized into no cancer, very low, low-, and intermediate-risk categories. The relationship between the model and IR PCa was investigated using binary generalized linear model (GLM) and assessed its discriminatory ability by calculating the area under the receiver operating characteristic curve (AUC).
Among 729 patients, PCa was detected in 234 individuals (32.1%), with 120 (16.5%) diagnosed with IR PCa. The AUC for the novel model compared to the clinical model was 0.806 (95% CI: 0.722-0.889) versus 0.669 (95% CI: 0.543-0.790), with a p-value of 0.018. In DCA, the GLM outperformed the clinical model by over 7%, potentially allowing for an additional 44.3% reduction in unnecessary biopsies. The PSAD emerged as the most significant predictor.
We developed a GLM utilizing pre-biopsy features to predict IR PCa. The model demonstrated good discrimination and clinical applicability, which could assist urologists in determining the necessity of a prostate biopsy.
中危前列腺癌(IR PCa)是局限性前列腺癌最常见的风险组。本研究旨在开发一种机器学习(ML)模型,该模型利用活检预测因子来估计IR PCa的概率,并与传统临床模型相比评估其性能。
2017年1月至2022年12月期间,前列腺特异性抗原(PSA)值≤20 ng/mL的患者接受经直肠超声引导下的前列腺活检。记录患者的年龄、PSA、直肠指检、前列腺体积、PSA密度(PSAD)、既往阴性活检、阳性核心数量、Gleason评分和活检结果。患者被分为无癌、极低、低和中危类别。使用二元广义线性模型(GLM)研究模型与IR PCa之间的关系,并通过计算受试者工作特征曲线(AUC)下的面积评估其鉴别能力。
在729例患者中,234例(32.1%)检测到前列腺癌,其中120例(16.5%)被诊断为IR PCa。与临床模型相比,新模型的AUC为0.806(95%CI:0.722 - 0.889),而临床模型为0.669(95%CI:0.543 - 0.790),p值为0.018。在决策曲线分析(DCA)中,GLM比临床模型表现优超过7%,可能使不必要的活检减少44.3%。PSAD成为最显著的预测因子。
我们开发了一种利用活检前特征预测IR PCa的GLM。该模型显示出良好的鉴别能力和临床适用性,可协助泌尿科医生确定前列腺活检的必要性。