Suppr超能文献

液相色谱-高分辨质谱中保留指数预测用于增强水中有机微污染物的结构鉴定:基于选择性的过滤

Prediction of Retention Indices in LC-HRMS for Enhanced Structural Identification of Organic Micropollutants in Water: Selectivity-Based Filtration.

作者信息

Kajtazi Ardiana, Kajtazi Marin, Santos Barbetta Maike Felipe, Bandini Elena, Eghbali Hamed, Lynen Frédéric

机构信息

Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium.

Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ul. Ivana Lučića 5, 10000 Zagreb, Croatia.

出版信息

Anal Chem. 2025 Jan 14;97(1):65-74. doi: 10.1021/acs.analchem.4c01784. Epub 2025 Jan 3.

Abstract

Addressing the global challenge of ensuring access to safe drinking water, especially in developing countries, demands cost-effective, eco-friendly, and readily available technologies. The persistence, toxicity, and bioaccumulation potential of organic pollutants arising from various human activities pose substantial hurdles. While high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) is a widely utilized technique for identifying pollutants in water, the multitude of structures for a single elemental composition complicates structural identification. While current HRMS and MS/MS databases often can provide hits for known molecules, these are often erroneous or misleading when authentic standards are unavailable. In this research, a machine-learning algorithm is developed to support the structural elucidation of small organic pollutants in water, with a focus on (carbon, oxygen, and hydrogen-based) molecules weighing less than 500 Da. The approach relies on a comparison of the experimental and predicted retention of the possible structures of unknowns for which an elemental composition was obtained by HRMS. A promising novelty is thereby the improved removal of erroneous structures via the combination of the retention information obtained from two reversed-phase-based stationary phases, depicting different selectivities (octadecylsilica, C18 and pentafluorphenylsilica, F5). The study translates retention times into retention indices for instrument independence and transferability across diverse HPLC-HRMS systems. The predictive algorithm, utilizing retention data and molecular descriptors, accurately predicts retention indices and proves its utility by eliminating incorrect structural formulas through a 2-stationary phase intersection-based filtration. Using a data set of 100 training compounds and 16 external test set compounds, two Multiple Linear Regression (MLR), MLR-C18 and MLR-F5 models were developed, employing the 16 most influential descriptors, out of 5666 screened. MLR-C18 achieves precise RI predictions, = 0.97, RMSE = 36, MAE = 26, while MLR-F5, though slightly less accurate, maintains a performance with = 0.96, RMSE = 44, MAE = 34. The intersection-based filtration (within ±1.5σ) showed the elimination of more than 70% of impossible structures for a given elemental composition. The model was further implemented in the identification of a drinking water sample to prove its potential. This tool holds significant promise for supporting water quality management and sustainable practices, contributing to faster structural identification of unknown organic micropollutants in water.

摘要

应对确保安全饮用水供应这一全球挑战,尤其是在发展中国家,需要具备成本效益、环境友好且易于获取的技术。各种人类活动产生的有机污染物具有持久性、毒性和生物累积潜力,这构成了重大障碍。虽然高效液相色谱与高分辨率质谱联用技术(HPLC-HRMS)是一种广泛用于识别水中污染物的技术,但单一元素组成的众多结构使结构鉴定变得复杂。虽然当前的HRMS和MS/MS数据库通常可以为已知分子提供匹配结果,但在没有真实标准品的情况下,这些结果往往是错误或具有误导性的。在本研究中,开发了一种机器学习算法,以支持水中小分子有机污染物的结构解析,重点关注(基于碳、氧和氢的)分子量小于500 Da的分子。该方法依赖于对未知物可能结构的实验保留时间和预测保留时间进行比较,未知物的元素组成通过HRMS获得。因此,一个有前景的创新点是,通过结合从两种基于反相的固定相(表现出不同选择性,十八烷基硅胶,C18和五氟苯基硅胶,F5)获得的保留信息,改进了对错误结构的去除。该研究将保留时间转化为保留指数,以实现仪器独立性并在不同的HPLC-HRMS系统之间实现可转移性。利用保留数据和分子描述符的预测算法能够准确预测保留指数,并通过基于两固定相交叉点的过滤消除不正确的结构式,证明了其效用。使用包含100种训练化合物和16种外部测试集化合物的数据集,开发了两个多元线性回归(MLR)模型,MLR-C18和MLR-F5模型,采用了从5666个筛选出的16个最具影响力的描述符。MLR-C18实现了精确的RI预测,R² = 0.97,RMSE = 36,MAE = 26,而MLR-F5虽然准确性略低,但保持了R² = 0.96,RMSE = 44,MAE = 34的性能。基于交叉点的过滤(在±1.5σ范围内)表明,对于给定的元素组成,消除了超过70%的不可能结构。该模型进一步应用于饮用水样本的鉴定以证明其潜力。该工具在支持水质管理和可持续实践方面具有重大前景,有助于更快地鉴定水中未知有机微污染物的结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验