Yang Qiaomu, Song Ellen, Wu Yu, Li Chenshuai, Gau Michael R, Anna Jessica M, Schelter Eric J, Walsh Patrick J
P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States.
Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15213, United States.
J Am Chem Soc. 2025 Jan 15;147(2):2061-2076. doi: 10.1021/jacs.4c15627. Epub 2025 Jan 3.
Photocatalytic C-H activation is an emerging area of research. While cerium chloride photocatalysts have been extensively studied, the role of alcohol additives in these systems remains a subject of ongoing discussion. It was demonstrated that the photocatalyst [NEt][CeCl] () produces •Cl and added alcohols exhibit zero-order kinetics. Prior studies by other researchers suggested that and alcohols lead to cerium alkoxide [Ce-OR] and alkoxy radical intermediates. To understand these seemingly divergent mechanistic proposals, an expanded investigation comparing cerium(IV) catalyst and cerium(III) complex [NEt][CeCl] (), which exhibit markedly different reactivity and C-H selectivity, is disclosed. Our findings reveal that alcohol additives accelerate the conversion of cerium(III) to cerium(IV) catalysts, forming key intermediates such as [NEt][CeCl(HOCH)] () and [NEt][CeCl(OCH)] (), driven by excited-state di--butyl azodicarboxylate under blue light irradiation. The active complex releases the •OCH radical, in sharp contrast to •Cl radicals initiated by cerium(IV) photoredox catalyst . These different reactivity and selectivity profiles can be understood in the context of complex generation and formation of base to afford complex . Experimental validation shows enhanced selectivity toward C-H bonds with different reactivity with catalyst and methanol upon the addition of base and decreased selectivity with catalyst and methanol upon the addition of acid. These findings unify the previously contrasting observations of cerium halide/alkoxide photocatalytic systems and provide a comprehensive understanding on the essential role of base/acid and alcohol in selectivity and reactivity.
光催化C-H活化是一个新兴的研究领域。虽然氯化铈光催化剂已得到广泛研究,但醇添加剂在这些体系中的作用仍是一个持续讨论的话题。已证明光催化剂[NEt₄][CeCl₆]( )会产生•Cl,且添加的醇表现出零级动力学。其他研究人员之前的研究表明, 和醇会生成铈醇盐[Ce-OR]和烷氧基自由基中间体。为了理解这些看似不同的机理观点,本文公开了一项扩展研究,比较了铈(IV)催化剂 和铈(III)配合物[NEt₄][CeCl₄]( ),它们表现出明显不同的反应性和C-H选择性。我们的研究结果表明,在蓝光照射下,受激发态偶氮二羧酸二丁酯驱动,醇添加剂加速了铈(III)向铈(IV)催化剂的转化,形成了关键中间体,如[NEt₄][CeCl₅(HOCH₃)]( )和[NEt₄][CeCl₅(OCH₃)]( )。活性配合物 释放出•OCH₃自由基( ),这与铈(IV)光氧化还原催化剂 引发的•Cl自由基形成鲜明对比。这些不同的反应性和选择性特征可以在配合物 的生成以及碱形成配合物 的背景下得到理解。实验验证表明,加入碱后,对具有不同反应性的C-H键与催化剂 和甲醇的选择性增强;加入酸后,与催化剂 和甲醇的选择性降低。这些发现统一了先前关于卤化铈/醇盐光催化体系的不同观察结果,并全面理解了碱/酸和醇在选择性和反应性中的重要作用。