Suppr超能文献

用于硼氮增强AZ80镁基复合材料流变应力预测的改进型Johnson-Cook模型与人工神经网络的对比分析

Comparative analysis of modified Johnson-Cook model and artificial neural network for flow stress prediction in BN-reinforced AZ80 magnesium composite.

作者信息

Elajjani Ayoub, Feng Shaochuan, Sun Chaoyang

机构信息

School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China.

Beijing Key Laboratory of Lightweight Metal Forming, Beijing 100083, People's Republic of China.

出版信息

J Phys Condens Matter. 2025 Jan 13;37(11). doi: 10.1088/1361-648X/ada59e.

Abstract

Boron nitride (BN), renowned for its exceptional optoelectrical properties, mechanical robustness, and thermal stability, has emerged as a promising two-dimensional material. Reinforcing AZ80 magnesium alloy with BN can significantly enhance its mechanical properties. To investigate and predict this enhancement during hot deformation, we introduce two independent modeling approaches a modified Johnson-Cook constitutive model and an artificial neural network (ANN). These models aim to capture both linear and nonlinear deformation characteristics. Hot compression tests conducted across various temperatures and strain rates provided a comprehensive dataset for model validation. The MJCC model, accounting for strain rate and temperature effects, achieved a correlation coefficientof 0.96 and an average absolute relative error (AARE) of 6.28%. In contrast, the ANN, trained on experimental data, improved the correlation coefficient toof 0.99 and reduced the AARE to below 1.5%, significantly enhancing predictive accuracy. These results indicate that while the modified J-C model provides reliable predictions under moderate conditions, the ANN more effectively captures complex behaviors under extreme deformation conditions. By comparing these modeling approaches, our study offers valuable insights for accurately predicting the rheological behavior of BN-reinforced AZ80 magnesium composite, aiding process optimization in industrial applications.

摘要

氮化硼(BN)以其优异的光电性能、机械强度和热稳定性而闻名,已成为一种很有前途的二维材料。用BN增强AZ80镁合金可显著提高其机械性能。为了研究和预测热变形过程中的这种增强效果,我们引入了两种独立的建模方法——一种改进的Johnson-Cook本构模型和一种人工神经网络(ANN)。这些模型旨在捕捉线性和非线性变形特征。在不同温度和应变速率下进行的热压缩试验为模型验证提供了全面的数据集。考虑应变速率和温度影响的MJCC模型的相关系数达到0.96,平均绝对相对误差(AARE)为6.28%。相比之下,基于实验数据训练的ANN将相关系数提高到0.99,并将AARE降低到1.5%以下,显著提高了预测精度。这些结果表明,虽然改进的J-C模型在中等条件下能提供可靠的预测,但ANN能更有效地捕捉极端变形条件下的复杂行为。通过比较这些建模方法,我们的研究为准确预测BN增强AZ80镁复合材料的流变行为提供了有价值的见解,有助于工业应用中的工艺优化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验