Suppr超能文献

癌症干细胞的分子成像及其在治疗抗性中的作用。

Molecular Imaging of Cancer Stem Cells and Their Role in Therapy Resistance.

作者信息

Dos Santos Sofia N, Witney Timothy H

机构信息

School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.

School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom

出版信息

J Nucl Med. 2025 Jan 3;66(1):14-19. doi: 10.2967/jnumed.124.267657.

Abstract

Despite recent therapeutic breakthroughs, cancer patients continue to face high recurrence and mortality rates due to treatment resistance. Cancer stem cells (CSCs), a subpopulation with self-renewal capabilities, are key drivers of refractive disease. This review explores the application of molecular imaging techniques, such as PET and SPECT, for the noninvasive detection of CSCs. By providing real-time monitoring of CSCs, these imaging methods have the potential to predict therapy resistance and guide personalized treatment approaches. Here, we cover the biological characteristics of CSCs, mechanisms of therapy resistance, and the identification and targeting of CSC-specific biomarkers with molecular imaging. Additionally, we address the challenges and opportunities for the clinical translation of CSC imaging, highlighting strategies where CSC imaging can be used to improve patient outcomes.

摘要

尽管最近在治疗方面取得了突破,但由于治疗耐药性,癌症患者仍然面临着高复发率和死亡率。癌症干细胞(CSCs)是具有自我更新能力的亚群,是难治性疾病的关键驱动因素。本综述探讨了分子成像技术,如正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT),在癌症干细胞无创检测中的应用。通过对癌症干细胞进行实时监测,这些成像方法有可能预测治疗耐药性并指导个性化治疗方案。在此,我们阐述了癌症干细胞的生物学特性、治疗耐药机制,以及通过分子成像识别和靶向癌症干细胞特异性生物标志物。此外,我们还讨论了癌症干细胞成像临床转化面临的挑战和机遇,强调了可利用癌症干细胞成像改善患者预后的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efe3/11705790/0807d5a1590c/jnumed.124.267657f1.jpg

相似文献

1
Molecular Imaging of Cancer Stem Cells and Their Role in Therapy Resistance.
J Nucl Med. 2025 Jan 3;66(1):14-19. doi: 10.2967/jnumed.124.267657.
2
Stem cell programs in cancer initiation, progression, and therapy resistance.
Theranostics. 2020 Jul 9;10(19):8721-8743. doi: 10.7150/thno.41648. eCollection 2020.
5
Novel role of pancreatic differentiation 2 in facilitating self-renewal and drug resistance of pancreatic cancer stem cells.
Br J Cancer. 2014 Jul 29;111(3):486-96. doi: 10.1038/bjc.2014.152. Epub 2014 Jul 8.
6
Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies.
Front Immunol. 2020 Aug 7;11:1280. doi: 10.3389/fimmu.2020.01280. eCollection 2020.
7
Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting.
BMB Rep. 2017 Mar;50(3):117-125. doi: 10.5483/bmbrep.2017.50.3.222.
8
Cancer Stem Cells: Root of the Evil.
Crit Rev Oncog. 2019;24(1):69-87. doi: 10.1615/CritRevOncog.2019029512.
9
Targeting cancer stem cell-specific markers and/or associated signaling pathways for overcoming cancer drug resistance.
Tumour Biol. 2016 Oct;37(10):13059-13075. doi: 10.1007/s13277-016-5294-5. Epub 2016 Aug 26.
10
Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis.
Semin Cancer Biol. 2018 Dec;53:90-109. doi: 10.1016/j.semcancer.2018.06.006. Epub 2018 Jun 30.

引用本文的文献

1
Targeting CSC-immune cell crosstalk to overcome chemoresistance and enhance immunotherapy efficacy.
Front Immunol. 2025 Jul 23;16:1620807. doi: 10.3389/fimmu.2025.1620807. eCollection 2025.
2
Nanomaterials targeting cancer stem cells to overcome drug resistance and tumor recurrence.
Front Oncol. 2025 Jun 6;15:1499283. doi: 10.3389/fonc.2025.1499283. eCollection 2025.
3
Mesenchymal stromal cells in bone marrow niche of patients with multiple myeloma: a double-edged sword.
Cancer Cell Int. 2025 Mar 26;25(1):117. doi: 10.1186/s12935-025-03741-x.

本文引用的文献

1
Cancer stem cells: advances in knowledge and implications for cancer therapy.
Signal Transduct Target Ther. 2024 Jul 5;9(1):170. doi: 10.1038/s41392-024-01851-y.
2
Aldehyde dehydrogenase 1 family: A potential molecule target for diseases.
Cell Biol Int. 2024 May 27. doi: 10.1002/cbin.12188.
3
F-Radiolabeling and Evaluation of an AMD3465 Derivative for PET Imaging of CXCR4 in a Mouse Breast Tumor Model.
Bioconjug Chem. 2024 May 15;35(5):567-574. doi: 10.1021/acs.bioconjchem.4c00167. Epub 2024 Apr 18.
4
Chemokine Receptor 4-Targeted PET/CT With 68 Ga-Pentixather Detects More Lesions Than 68 Ga-Pentixafor PET/CT in Multiple Myeloma.
Clin Nucl Med. 2024 Jun 1;49(6):592-593. doi: 10.1097/RLU.0000000000005194. Epub 2024 Apr 17.
5
Metabolic adaptations in cancer stem cells: A key to therapy resistance.
Biochim Biophys Acta Mol Basis Dis. 2024 Jun;1870(5):167164. doi: 10.1016/j.bbadis.2024.167164. Epub 2024 Apr 9.
7
Evaluating CD133 as a Radiotheranostic Target in Small-Cell Lung Cancer.
Mol Pharm. 2024 Mar 4;21(3):1402-1413. doi: 10.1021/acs.molpharmaceut.3c01063. Epub 2024 Feb 8.
8
Targeting cancer cell dormancy.
Nat Rev Cancer. 2024 Feb;24(2):97-104. doi: 10.1038/s41568-023-00642-x. Epub 2023 Dec 7.
9
Advances in PET Imaging of the CXCR4 Receptor: [Ga]Ga-PentixaFor.
Semin Nucl Med. 2024 Jan;54(1):163-170. doi: 10.1053/j.semnuclmed.2023.09.002. Epub 2023 Nov 3.
10
Advances in the structure, mechanism and targeting of chemoresistance-linked ABC transporters.
Nat Rev Cancer. 2023 Nov;23(11):762-779. doi: 10.1038/s41568-023-00612-3. Epub 2023 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验