Suppr超能文献

多尺度X射线散射阐明了用于CO还原的氧化物衍生铜电催化剂的活化和失活过程。

Multiscale X-ray scattering elucidates activation and deactivation of oxide-derived copper electrocatalysts for CO reduction.

作者信息

de Ruiter J, Benning V R M, Yang S, den Hartigh B J, Wang H, Prins P T, Dorresteijn J M, Janssens J C L, Manna G, Petukhov A V, Weckhuysen B M, Rabouw F T, van der Stam W

机构信息

Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.

Soft Condensed Matter, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands.

出版信息

Nat Commun. 2025 Jan 3;16(1):373. doi: 10.1038/s41467-024-55742-5.

Abstract

Electrochemical reduction of carbon dioxide (CO) into sustainable fuels and base chemicals requires precise control over and understanding of activity, selectivity and stability descriptors of the electrocatalyst under operation. Identification of the active phase under working conditions, but also deactivation factors after prolonged operation, are of the utmost importance to further improve electrocatalysts for electrochemical CO conversion. Here, we present a multiscale in situ investigation of activation and deactivation pathways of oxide-derived copper electrocatalysts under CO reduction conditions. Using well-defined CuO octahedra and cubes, in situ X-ray scattering experiments track morphological changes at small scattering angles and phase transformations at wide angles, with millisecond to second time resolution and ensemble-scale statistics. We find that undercoordinated active sites promote CO reduction products directly after CuO to Cu activation, whereas less active planar surface sites evolve over time. These multiscale insights highlight the dynamic and intimate relationship between electrocatalyst structure, surface-adsorbed molecules, and catalytic performance, and our in situ X-ray scattering methodology serves as an additional tool to elucidate the factors that govern electrocatalyst (de)stabilization.

摘要

将二氧化碳(CO₂)电化学还原为可持续燃料和基础化学品需要在操作过程中精确控制和理解电催化剂的活性、选择性和稳定性描述符。识别工作条件下的活性相以及长时间运行后的失活因素对于进一步改进用于电化学CO₂转化的电催化剂至关重要。在此,我们展示了在CO₂还原条件下对氧化物衍生的铜电催化剂的活化和失活途径进行的多尺度原位研究。使用定义明确的CuO八面体和立方体,原位X射线散射实验跟踪小散射角处的形态变化和广角处的相变,具有毫秒到秒的时间分辨率和整体尺度统计。我们发现,欠配位的活性位点在CuO活化后直接促进CO₂还原产物,而活性较低的平面表面位点则随时间演变。这些多尺度见解突出了电催化剂结构、表面吸附分子和催化性能之间的动态密切关系,并且我们的原位X射线散射方法作为一种额外的工具来阐明控制电催化剂(去)稳定化的因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5dc/11698955/e7b3fc83fdf1/41467_2024_55742_Fig1_HTML.jpg

相似文献

2
Near-Unity Electrochemical CO to CO Conversion over Sn-Doped Copper Oxide Nanoparticles.
ACS Catal. 2022 Dec 16;12(24):15146-15156. doi: 10.1021/acscatal.2c04279. Epub 2022 Nov 28.
3
Residual Chlorine Induced Cationic Active Species on a Porous Copper Electrocatalyst for Highly Stable Electrochemical CO Reduction to C.
Angew Chem Int Ed Engl. 2021 May 10;60(20):11487-11493. doi: 10.1002/anie.202102606. Epub 2021 Apr 8.
5
An Investigation of Active Sites for electrochemical CO Reduction Reactions: From In Situ Characterization to Rational Design.
Adv Sci (Weinh). 2021 Mar 3;8(9):2003579. doi: 10.1002/advs.202003579. eCollection 2021 May.
6
Operando studies reveal active Cu nanograins for CO electroreduction.
Nature. 2023 Feb;614(7947):262-269. doi: 10.1038/s41586-022-05540-0. Epub 2023 Feb 8.
8
In Situ Engineering of the Cu/Cu Interface to Boost C Selectivity in CO Electroreduction.
ACS Appl Mater Interfaces. 2022 Aug 17;14(32):36527-36535. doi: 10.1021/acsami.2c05992. Epub 2022 Aug 4.
9
Sulfur Changes the Electrochemical CO Reduction Pathway over Cu Electrocatalysts.
Angew Chem Int Ed Engl. 2023 Oct 26;62(44):e202310740. doi: 10.1002/anie.202310740. Epub 2023 Sep 26.
10
N-doped CuO with the tunable Cu and Cu sites for selective CO electrochemical reduction to ethylene.
J Environ Sci (China). 2025 Apr;150:246-253. doi: 10.1016/j.jes.2024.03.012. Epub 2024 Mar 17.

引用本文的文献

本文引用的文献

1
Monitoring the Structural Changes in Iridium Nanoparticles during Oxygen Evolution Electrocatalysis with X-ray Total Scattering.
J Am Chem Soc. 2024 Oct 9;146(40):27517-27527. doi: 10.1021/jacs.4c08149. Epub 2024 Sep 29.
2
Interrogation of Oxidative Pulsed Methods for the Stabilization of Copper Electrodes for CO Electrolysis.
J Am Chem Soc. 2024 Jul 17;146(28):19509-19520. doi: 10.1021/jacs.4c06284. Epub 2024 Jul 5.
3
Recent advances in synchrotron scattering methods for probing the structure and dynamics of colloids.
Adv Colloid Interface Sci. 2024 Mar;325:103114. doi: 10.1016/j.cis.2024.103114. Epub 2024 Feb 22.
4
Hybrid oxide coatings generate stable Cu catalysts for CO electroreduction.
Nat Mater. 2024 May;23(5):680-687. doi: 10.1038/s41563-024-01819-x. Epub 2024 Feb 16.
5
and X-ray Scattering Methods in Electrochemistry and Electrocatalysis.
Chem Rev. 2024 Feb 14;124(3):629-721. doi: 10.1021/acs.chemrev.3c00331. Epub 2024 Jan 22.
6
Spatiotemporal Mapping of Local Heterogeneities during Electrochemical Carbon Dioxide Reduction.
JACS Au. 2023 Jul 6;3(7):1890-1901. doi: 10.1021/jacsau.3c00129. eCollection 2023 Jul 24.
7
Operando studies reveal active Cu nanograins for CO electroreduction.
Nature. 2023 Feb;614(7947):262-269. doi: 10.1038/s41586-022-05540-0. Epub 2023 Feb 8.
8
Near-Unity Electrochemical CO to CO Conversion over Sn-Doped Copper Oxide Nanoparticles.
ACS Catal. 2022 Dec 16;12(24):15146-15156. doi: 10.1021/acscatal.2c04279. Epub 2022 Nov 28.
9
Structural evolution and strain generation of derived-Cu catalysts during CO electroreduction.
Nat Commun. 2022 Aug 18;13(1):4857. doi: 10.1038/s41467-022-32601-9.
10
Probing the Dynamics of Low-Overpotential CO-to-CO Activation on Copper Electrodes with Time-Resolved Raman Spectroscopy.
J Am Chem Soc. 2022 Aug 24;144(33):15047-15058. doi: 10.1021/jacs.2c03172. Epub 2022 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验