de Ruiter J, Benning V R M, Yang S, den Hartigh B J, Wang H, Prins P T, Dorresteijn J M, Janssens J C L, Manna G, Petukhov A V, Weckhuysen B M, Rabouw F T, van der Stam W
Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Soft Condensed Matter, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Nat Commun. 2025 Jan 3;16(1):373. doi: 10.1038/s41467-024-55742-5.
Electrochemical reduction of carbon dioxide (CO) into sustainable fuels and base chemicals requires precise control over and understanding of activity, selectivity and stability descriptors of the electrocatalyst under operation. Identification of the active phase under working conditions, but also deactivation factors after prolonged operation, are of the utmost importance to further improve electrocatalysts for electrochemical CO conversion. Here, we present a multiscale in situ investigation of activation and deactivation pathways of oxide-derived copper electrocatalysts under CO reduction conditions. Using well-defined CuO octahedra and cubes, in situ X-ray scattering experiments track morphological changes at small scattering angles and phase transformations at wide angles, with millisecond to second time resolution and ensemble-scale statistics. We find that undercoordinated active sites promote CO reduction products directly after CuO to Cu activation, whereas less active planar surface sites evolve over time. These multiscale insights highlight the dynamic and intimate relationship between electrocatalyst structure, surface-adsorbed molecules, and catalytic performance, and our in situ X-ray scattering methodology serves as an additional tool to elucidate the factors that govern electrocatalyst (de)stabilization.
将二氧化碳(CO₂)电化学还原为可持续燃料和基础化学品需要在操作过程中精确控制和理解电催化剂的活性、选择性和稳定性描述符。识别工作条件下的活性相以及长时间运行后的失活因素对于进一步改进用于电化学CO₂转化的电催化剂至关重要。在此,我们展示了在CO₂还原条件下对氧化物衍生的铜电催化剂的活化和失活途径进行的多尺度原位研究。使用定义明确的CuO八面体和立方体,原位X射线散射实验跟踪小散射角处的形态变化和广角处的相变,具有毫秒到秒的时间分辨率和整体尺度统计。我们发现,欠配位的活性位点在CuO活化后直接促进CO₂还原产物,而活性较低的平面表面位点则随时间演变。这些多尺度见解突出了电催化剂结构、表面吸附分子和催化性能之间的动态密切关系,并且我们的原位X射线散射方法作为一种额外的工具来阐明控制电催化剂(去)稳定化的因素。