Suppr超能文献

基于多智能体在线策略强化学习的自适应平均动脉压控制

Adaptive average arterial pressure control by multi-agent on-policy reinforcement learning.

作者信息

Hong Xiaofeng, Ayadi Walid, Alattas Khalid A, Mohammadzadeh Ardashir, Salimi Mohamad, Zhang Chunwei

机构信息

Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China.

Mechatronics and Intelligent Systems, Abu Dhabi Polytechnic, Abu Dhabi, United Arab Emirates.

出版信息

Sci Rep. 2025 Jan 3;15(1):679. doi: 10.1038/s41598-024-84791-5.

Abstract

The current research introduces a model-free ultra-local model (MFULM) controller that utilizes the multi-agent on-policy reinforcement learning (MAOPRL) technique for remotely regulating blood pressure through precise drug dosing in a closed-loop system. Within the closed-loop system, there exists a MFULM controller, an observer, and an intelligent MAOPRL algorithm. Initially, a flexible MFULM controller is created to make adjustments to blood pressure and medication dosages. Following this, an observer is incorporated into the main controller to improve performance and stability by estimating states and disturbances. The controller parameters are optimized using MAOPRL in an adaptive manner, which involves the use of an actor-critic approach in an adaptive fashion. This approach enhances the adaptability of the controller by allowing for dynamic modifications to dosage and blood pressure control parameters. In the presence of disturbances or instabilities, the critic's feedback aids the actor in adjusting actions to reduce their impact, utilizing a complementary strategy to tackle deficiencies in the primary controller. Lastly, various evaluations, including assessments under normal conditions, adaptability between patients, and stability evaluations against mixed disturbances, have been carried out to confirm the efficiency and viability of the proposed method.

摘要

当前的研究引入了一种无模型超局部模型(MFULM)控制器,该控制器利用多智能体在线强化学习(MAOPRL)技术,通过在闭环系统中精确给药来远程调节血压。在闭环系统中,存在一个MFULM控制器、一个观测器和一种智能MAOPRL算法。首先,创建一个灵活的MFULM控制器来调整血压和药物剂量。在此之后,将一个观测器纳入主控制器,通过估计状态和干扰来提高性能和稳定性。使用MAOPRL以自适应方式优化控制器参数,这涉及以自适应方式使用actor-critic方法。这种方法通过允许动态修改剂量和血压控制参数来增强控制器的适应性。在存在干扰或不稳定的情况下,评论家的反馈有助于行动者调整行动以减少其影响,利用一种互补策略来解决主控制器中的不足。最后,进行了各种评估,包括正常条件下的评估、患者之间的适应性评估以及针对混合干扰的稳定性评估,以确认所提出方法的有效性和可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fbe/11699154/956c5e6872e9/41598_2024_84791_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验