Suppr超能文献

基于超声图像深度迁移学习特征的肝囊性棘球蚴病计算机辅助诊断

Computer-aided diagnosis of hepatic cystic echinococcosis based on deep transfer learning features from ultrasound images.

作者信息

Wu Miao, Yan Chuanbo, Sen Gan

机构信息

College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China.

出版信息

Sci Rep. 2025 Jan 3;15(1):607. doi: 10.1038/s41598-024-85004-9.

Abstract

Hepatic cystic echinococcosis (HCE), a life-threatening liver disease, has 5 subtypes, i.e., single-cystic, polycystic, internal capsule collapse, solid mass, and calcified subtypes. And each subtype has different treatment methods. An accurate diagnosis is the prerequisite for effective HCE treatment. However, clinicians with less diagnostic experience often make misdiagnoses of HCE and confuse its 5 subtypes in clinical practice. Computer-aided diagnosis (CAD) techniques can help clinicians to improve their diagnostic performance. This paper aims to propose an efficient CAD system that automatically differentiates 5 subtypes of HCE from the ultrasound images. The proposed CAD system adopts the concept of deep transfer learning and uses a pre-trained convolutional neural network (CNN) named VGG19 to extract deep CNN features from the ultrasound images. The proven classifier models, k - nearest neighbor (KNN) and support vecter machine (SVM) models, are integrated to classify the extracted deep CNN features. 3 distinct experiments with the same deep CNN features but different classifier models (softmax, KNN, SVM) are performed. The experiments followed 10 runs of the five-fold cross-validation process on a total of 1820 ultrasound images and the results were compared using Wilcoxon signed-rank test. The overall classification accuracy from low to high was 90.46 ± 1.59% for KNN classifier, 90.92 ± 2.49% for transfer learned VGG19, and 92.01 ± 1.48% for SVM, indicating SVM classifiers with deep CNN features achieved the best performance (P < 0.05). Other performance measures used in the study are specificity, sensitivity, precision, F1-score, and area under the curve (AUC). In addition, the paper addresses a practical aspect by evaluating the system with smaller training data to demonstrate the capability of the proposed classification system. The observations of the study imply that transfer learning is a useful technique when the availability of medical images is limited. The proposed classification system by using deep CNN features and SVM classifier is potentially helpful for clinicians to improve their HCE diagnostic performance in clinical practice.

摘要

肝囊性棘球蚴病(HCE)是一种危及生命的肝脏疾病,有5种亚型,即单囊型、多囊型、内囊塌陷型、实体肿块型和钙化型。并且每种亚型有不同的治疗方法。准确的诊断是有效治疗HCE的前提。然而,诊断经验较少的临床医生在临床实践中经常对HCE做出误诊并混淆其5种亚型。计算机辅助诊断(CAD)技术可以帮助临床医生提高他们的诊断性能。本文旨在提出一种高效的CAD系统,该系统能从超声图像中自动区分HCE的5种亚型。所提出的CAD系统采用深度迁移学习的概念,并使用一个名为VGG19的预训练卷积神经网络(CNN)从超声图像中提取深度CNN特征。将经过验证的分类器模型,k近邻(KNN)和支持向量机(SVM)模型,集成起来对提取的深度CNN特征进行分类。进行了3个不同的实验,这些实验使用相同的深度CNN特征但不同的分类器模型(softmax、KNN、SVM)。实验在总共1820张超声图像上按照五折交叉验证过程进行了10次运行,并使用Wilcoxon符号秩检验比较结果。总体分类准确率从低到高依次为:KNN分类器为90.46±1.59%,迁移学习的VGG19为90.92±2.49%,SVM为92.01±1.48%,表明具有深度CNN特征的SVM分类器取得了最佳性能(P<0.05)。该研究中使用的其他性能指标有特异性、敏感性、精确率、F1分数和曲线下面积(AUC)。此外,本文通过用较少的训练数据评估该系统来解决一个实际问题,以证明所提出的分类系统的能力。该研究的观察结果表明,当医学图像的可用性有限时,迁移学习是一种有用的技术。所提出的使用深度CNN特征和SVM分类器的分类系统可能有助于临床医生在临床实践中提高他们对HCE的诊断性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2202/11698856/811b9e6b579d/41598_2024_85004_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验